Monday, May 1, 2017

SBRT Dose Escalation

Is there an optimum treatment dose for SBRT? At the low end of the spectrum, Alan Katz found that 35Gy in 5 fractions gave equivalent oncological outcomes with less toxicity compared to 36.5 Gy. At the other end of the dose spectrum, a clinical trial pushed the dose as high as 50 Gy in 5 fractions with disastrous consequences (see this link).  A trial of high dose rate brachytherapy, which is radiologically similar to SBRT, failed to find an optimum dose.

But radiation safety is not only just about dose. We saw that two treatment schedules using the same prescribed dose (40 Gy in 5 fractions) had disparate toxicity outcomes (see this link). In fact, the 12 month toxicity outcomes of Dr. King's high-risk study were recently presented and look excellent (see this link). It's also worth noting once again the outcomes of the 5-year multi-institutional SBRT clinical trial that used 40 Gy in 5 fractions and had excellent oncological and toxicity outcomes (see this link).

Helou et al. reported the outcomes of their SBRT (they call it SABR, but it's the same thing) trials at the Sunnybrook Health Sciences Centre in Toronto, Canada. There were sequential trials conducted from 2006-2014:

  • 35 Gy/5 fractions/29 days - 82 low risk men only
  • 40 Gy/5 fractions/11 days or 29 days - 177 low and intermediate risk men

A few (12) men had up to 6 months of androgen deprivation to shrink their prostates prior to radiation.

As an early measure of oncological effectiveness, they used PSA at 3 years (PSA3Y) after radiation. After correcting for the other variables like age, baseline PSA, T stage, and ADT use, the dose received remained the biggest predictor of PSA3Y. Median PSA3Y was:

  • 0.64 ng/ml in those who received 35 Gy
  • 0.27 ng/ml in those who received 40 Gy
  • The difference was significant in both low risk men and intermediate risk men

The use of PSA3Y as a surrogate endpoint for biochemical recurrence is controversial. Because prostate cancer progresses very slowly and radiation, at the very least, reduces the cancer burden, it can take at least 5 years, and as long as 10 years, before we start to see concrete evidence that such therapy is curative. Also, a longer time until the nadir is achieved has been found to be correlated with failure-free survival (see this link). Nadir PSA has been proven to be a strong predictor of a lasting cure (see this link), but no one can tell when the nadir will be reached. In a recent study comparing the PSA at 1000 days after SBRT or HDR brachytherapy to the PSA at 1000 days after conventional IMRT, Kishan et al. reported that the PSA was lower for SBRT/HDR-BT. While the downward slope was about the same for the first 1000 days, the slope was steeper afterwards for SBRT/HDR-BT, indicating that a lower nadir would be achieved.

After correcting for confounders like age, baseline urinary function, and time between treatments, late term urinary toxicity of grade 2 or higher was 17 times greater among those who received 40 Gy compared to those who received 35 Gy.

The authors previously reported late term rectal toxicity. After 2 years, the cumulative probability of  grade 2 or higher rectal toxicity was suffered among:

  • 5% of the men who received 35 Gy with 4mm margins
  • 27% of the men who received 40 Gy with 5 mm margins
  • 42% of the men who received 40 Gy with 5 mm margins +  30 Gy to seminal vesicles received 

Grade 3 and 4 rectal toxicity was especially high (10%) in the group that had their seminal vesicles irradiated. There were 3 cases of fistulas that may be attributable to rectal biopsies. [Patients should be very careful about the use of any kind of instrumentation within at least 6 months of radiation. That includes cystoscopies and colonoscopies.] Since this study, the authors have changed their radiation planning to include faster (VMAT) linacs and improved rectal dose constraints. Other changes that might mitigate rectal toxicity may include use of intrafractional tracking, rectal immobilization, and a rectal spacer.

There was clearly a trade-off between SBRT dose and late-term side effects of treatments. Perhaps we will one day be able to identify those cancers that are curable with a lower dose, and treat only those with the more radio-resistant cancers with a higher dose. Some believe that such techniques as simultaneous integrated boosts or heterogeneous planning may cure the cancer in the prostate better with less damage to organs at risk. But they remain to be proved in randomized clinical trials.

Note: Thanks to Dr. Andrew Loblaw for allowing me to review the full text of the study.

Thursday, March 30, 2017

Revised ASCO/CCO brachytherapy guidelines

The publication of the ASCENDE-RT clinical trial (discussed here) has led to a revision in the brachytherapy guidelines (available here) issued by the American Society of Clinical Oncology (ASCO) and Cancer Care Ontario (CCO). The guidelines are for patients who choose radical therapy rather than active surveillance. They based their guidelines only on randomized clinical trials that included brachytherapy as an option.  They exclude high dose rate brachytherapy (HDR-BT) as a monotherapy because it has not been proven in a randomized clinical trial.

Their guidelines suggesting which therapies are suitable are stratified by patient risk level:

Low Risk
  • Low dose rate brachytherapy (LDR-BT) alone
  • External Beam Radiation Therapy (EBRT) alone, or
  • Radical prostatectomy (RP)

Intermediate Risk

For favorable intermediate risk patients (no Gleason score> 3+4, no more than half the cores positive, PSA<10, and stage<T2b):
  • LDR-BT alone
For other intermediate risk patients:
  • EBRT with or without androgen deprivation therapy (ADT) and a brachy boost (LDR-BT or HDR-BT) to the prostate.

High Risk:
  • EBRT and ADT and a brachy boost (LDR-BT or HDR-BT)

They make the following qualifying statements:
  • Patients should be counseled about all their management options (surgery, EBRT, active surveillance, as applicable) in a balanced, objective manner, preferably from multiple disciplines.
  • Recommendation for low-risk patients is unchanged from initial guideline, because no new randomized data informing this question have been presented or published since.
  • Patients ineligible for brachytherapy may include: moderate to severe baseline urinary symptoms, large prostate volume, medically unfit, prior transurethral resection of the prostate, and contraindications to radiation treatment.
  • ADT may be given in neoadjuvant, concurrent, and/or adjuvant settings at physician discretion. It is noted that neoadjuvant ADT may cytoreduce the prostate volume sufficiently to allow brachytherapy
  • There may be increased genitourinary toxicity compared with EBRT alone.
  • Brachytherapy should be performed at a center following strict quality-assurance standards.
  • It cannot be determined whether there is an overall or cause-specific survival advantage for brachytherapy compared with EBRT alone, because none of the trials were designed or powered to detect a meaningful difference in survival outcomes.
Neither the patient nor the doctor should take these to be their only options. ASCO/CCO only included options for which there is Level 1 evidence; that is, evidence from  randomized comparative clinical trials. Patients, doctors and insurance providers should make treatment decisions based on the full array of available clinical data, understanding that higher level evidence carries more weight.

Monday, March 27, 2017

Conflicting messages after surgery for high-risk patients from radiation oncologists and urologists

In spite of the data suggesting that brachy boost has better outcomes for high risk patients, it is being utilized less often and surgery is being utilized more often. After surgery, the high-risk patient is monitored by his urologist (Uro). If the urologist fears a recurrence, he may (1) refer his patient to a radiation oncologist (RO) for adjuvant or salvage radiation therapy (A/SRT), (2) refer his patient to a medical oncologist if he believes the recurrence is metastatic and incurable, or (3) he may continue to monitor the patient. The rate of utilization of A/SRT has been dwindling in spite of three major randomized clinical trials that proved that ART has better outcomes than waiting. If the patient does get to see a radiation oncologist, he may be advised to be treated soon, in conflict with the urologist advising him to wait. This puts the patient in a difficult situation.

Kishan et al. report the results of a survey among 846 ROs and 407 Uros. The researchers sought their opinions about under which conditions they would offer a high-risk post-prostatectomy patient A/SRT. For the purposes of their survey, they defined "adjuvant RT" as radiation given before PSA has become detectable, and "salvage RT" as radiation given after PSA has become detectable. "Early salvage RT" means PSA is detectable but lower than 0.2 ng/ml.

The following table shows the percent of ROs and Uros who agreed with each survey question:



RO
Uro
ART underutilized
75%
38%
ART overutilized
4%
19%
SRT underutilized
65%
43%
SRT overutilized
1%
5%



SRT when first PSA is detectable
93%
86%
ART when first PSA is undetectable
43%
16%
Early SRT when first PSA is undetectable
42%
43%
SRT when first PSA is undetectable
16%
41%



Recommend SRT if PSA is:


Detectable
15%
7%
2+ consecutive rises
30%
20%
>0.03-0.1
8%
8%
>0.1-0.2
13%
11%
>0.2-0.4
29%
35%
>0.4
5%
19%



Recommend ART if pathology report is adverse:


Positive margin
80%
47%
Extraprostatic Extension (pT3a)
60%
32%
Seminal Vesicle Invasion(pT3b)
68%
47%
Local organ spread (pT4)
66%
46%
Pelvic lymph node (pN1)
59%
29%
Gleason score 8-10
20%
20%
Prefer SRT
12%
25%



Recommend adjuvant ADT with ART if:


Positive margin
14%
12%
Extraprostatic Extension (pT3a)
15%
11%
Seminal Vesicle Invasion(pT3b)
29%
25%
Local organ spread (pT4)
36%
37%
Pelvic lymph node (pN1)
65%
46%
Gleason score 8-10
46%
28%
No ADT
22%
31%



Recommend whole pelvic A/SRT if:


Positive margin
6%
9%
EPE
12%
9%
SVI
25%
22%
pT4
30%
30%
pN1
82%
64%
GS 8-10
36%
24%
No role
12%
24%
Other
13%
3%

In contrast to Uros, ROs are more likely to believe that both ART and SRT are underutilized. Uros believe that are used about right. ROs often see patients too late if they see them at all.

When the first PSA is detectable, both kinds of doctors would recommend SRT. When the first PSA is undetectable, 43% of ROs would recommend ART nonetheless, while only 16% of Uros would recommend ART.

Most of the ROs would treat when they see 2 consecutive rises in PSA, or if the PSA was detectable and under 0.2. Most (54%) Uros would wait until PSA was over 0.2.

Over half the ROs would recommend ART to high risk patients demonstrating any of several adverse pathological features: positive margins, stage T3/4, or positive pelvic lymph nodes. The majority of Uros would not recommend ART to high risk patients with those adverse pathologies.

The majority (65%) of ROs would include adjuvant ADT if there were positive lymph nodes. Uros were less likely to recommend adjuvant ADT based on lymph node involvement and Gleason score.

While most of both groups would have added whole pelvic radiation for patients with positive lymph nodes, 82% of ROs would, but only 64% of Uros.

ROs, knowing that a locally advanced cancer can suddenly become metastatic, and therefore incurable, would like to give A/SRT as soon as possible. Uros, who treat patients for the combined effect of surgery and radiation on urinary and sexual function, would like to wait as long as possible. The patient is caught in the middle of this difficult decision. Some have recommended beginning neoadjuvant ADT at the lowest detectable PSA and extending that time for as long as needed  to give urinary tissues maximum time to heal. Whatever the high-risk patient may eventually decide is in his best interest, he should meet with an RO immediately after surgery to hear both sides of the issue. Uros are blocking access to information that the patient needs.