Showing posts with label brachy boost. Show all posts
Showing posts with label brachy boost. Show all posts

Thursday, March 8, 2018

Brachy boost therapy and surgery extend survival about the same in high risk patients, but brachy boost does more

Two retrospective studies were published in the last week, and they had some similar findings, but some dissimilar things to say about which treatment is best for high risk prostate cancer. The three therapies they looked at were the combination of brachytherapy and external beam radiation (brachy boost therapy - BBT), external beam therapy alone (EBRT), and surgery (RP).

Kishan et al. reported on 1,809 men with Gleason score of 9 or 10 who were treated between 2000 and 2013 at 12 tertiary cancer care institutions (UCLA, Los Angeles VA, California Endocurie Therapy Center, Fox Chase, Mt. Sinai, Cleveland Clinic, Wheeling Jesuit University, University of Michigan, Johns Hopkins, Oslo University, William Beaumont Hospital, and Dana-Farber).

Patient characteristics:
  • 639 were treated with radical prostatectomy (RP).
  • 734 were treated with EBRT only.
  • 436 were treated with BBT (BT was either low dose rate in 62% or high dose rate in 38%).
  • All patients were Gleason 9 or 10 on biopsy.
  • Pelvic LN involvement was discovered in 17% of RP patients ; 40% had positive surgical margins.
  • RP patients were younger (61 years of age) compared to EBRT or BBT patients (68 years of age)
  • RP patients were lower stage ( 87% clinical stage T1/T2) compared to EBRT (70% clinical stage T1/T2 ) or BBT patients (79% clinical stage T1/T2)
  • RP patients had lower pre-therapy PSA (7 ng/ml) compared to EBRT or BBT patients (10 ng/ml)
  • RP patients had lower percentage of Gleason score 10 (4%) compared to EBRT (6%) or BBT patients (9%)
Treatment specs
  • Among the RP patients, 43% had adjuvant or salvage radiation therapy (68 Gy).
  • Among radiation patients, about 90% had adjuvant ADT
  • Median dose of EBRT was 74 Gy.
    • adjuvant ADT continued for 22 months, median.
  • Median equivalent dose of EBRT+BT was 92 Gy
    • adjuvant ADT continued for 12 months.
Oncological outcomes

After a median follow-up of 4.2, 5.1 and 6.3 years for RP, EBRT, and BBT, respectively, the oncological outcomes (adjusted for age and disease characteristics) were as follows:
  • The 10-year rates of distant metastases were
    • 46% for RP 
    • 44% for EBRT
    • 13% for BBT
    • Differences between BBT and the two others were statistically significant.

  • The 10-year rates of prostate cancer-specific mortality (PCSM) were
    • 23% for RP
    • 26% for EBRT
    • 13% for EBRT + BT
    • Differences between BBT and the two others were statistically significant.

  • The 10-year rates of all-cause mortality (ACM) were
    • 32% for RP
    • 39% for EBRT
    • 31% for BBT
    • None of the differences were statistically significant.
    • There was a difference at 7.5 years in favor of BBT that vanished by 10 years.
In additional analyses, the authors looked at outcomes by duration of androgen deprivation for those receiving any kind of radiation. They found that ADT duration made no significant difference in detected metastases or PCSM within EBRT or BBT, and did not account for the difference between them. They also looked at radiation doses. EBRT patients who received <70 Gy had PCSM significantly worse than those who received ≥ 78 Gy. The rates of metastases did not differ. Notably, very few (11%) of the EBRT patients had both ≥ 78 Gy and ≥2 years of ADT, a combination that is now considered standard of care. Those that did had superior outcomes compared to RP. The use of LDR-BT or HDR-BT as part of BBT made no difference.

The authors conclude:
Among patients with Gleason score 9-10 prostate cancer, treatment with EBRT+BT with androgen deprivation therapy was associated with significantly better prostate cancer–specific mortality and longer time to distant metastasis compared with EBRT with androgen deprivation therapy or with RP.

In an analysis of the National Cancer Database, Ennis et al. reported on the overall survival of patients who were treated with RP, EBRT, and BBT for high-risk PC from 2004 to 2013. The database covers about 70% of all new prostate cancer patients treated in the US. The patient profile was:

  • 24,688 patients treated with RP, at least at first
  • 15,435 patients treated with EBRT
  • 2,642 patients treated with BBT.
  • All EBRT patients also had adjuvant ADT
  • BBT patients may or may not have had ADT
  • All were high risk by the NCCN definition: Either Gleason score 8-10, stage T3/4, or PSA≥20 ng/ml
  • RP patients were younger (62 years of age) compared to EBRT (70 years of age) or BBT patients (67 years of age)
  • RP patients were lower stage ( 89% clinical stage T1/T2) compared to EBRT (84% clinical stage T1/T2 ) or BBT patients (85% clinical stage T1/T2)
  • RP patients had lower pre-therapy mean PSA (19 ng/ml) compared to EBRT (23 ng/ml) but the same as BBT patients (19 ng/ml)
  • RP patients had lower percentage of Gleason score 8-10 (70%) compared to EBRT (78%) or BBT patients (73%)
  • Comorbidities were similar among groups.
  • The above risk factors as well as socioeconomic factors and year of diagnosis were used to adjust the raw data.
  • It is unknown what percent of RP patients had adjuvant or salvage radiation.
  • There was no data available on post-reatment metastases or prostate cancer-specific survival
Because surgery is sometimes aborted when pelvic LN cancer is discovered, they estimated the probability that patients had positive nodes, and included it as a risk factor. This would seem to double count those risk factors, but the authors say it had little effect. Based on their model, they estimated that the percent who had positive nodes was 10% of RP patients, 34% of EBRT patients, and 23% of BBT patients.

After a median follow-up of 36 months, the relative oncological outcomes (adjusted for age and other patient and disease characteristics), expressed as hazard ratios were as follows:

  • RP: 1.0
  • EBRT: 1.53 (i.e., 53% worse survival vs. RP)
    • EBRT with < 79.2 Gy: 1.68
    • EBRT with ≥79.2 Gy: 1.33
  • BBT: 1.17 (not significantly different from RP)
    • not different if ADT included
    • no interaction between comorbidities and treatment effects
The authors conclude:
This analysis showed no statistical difference in survival between patients treated with RP versus EBRT plus brachytherapy with or without AD. EBRT plus AD was associated with lower survival. 
In an accompanying editorial, Ronald Chen discusses the problem of drawing conclusions about comparative effectiveness from this kind of registry data in the absence of clinical trial data. He points out that patient selection criteria are not completely reflected in comorbidity data. He believes that those who are selected for EBRT are just less healthy than those who can undergo anesthesia for surgery or brachytherapy. Other unmeasured confounders include burden of disease, and patient and physician preferences.

The two studies had similar conclusions, but tell us different things. They both found no effect of treatment on overall survival. Lest one walk away thinking it then doesn't matter, the experience of living with painful, crippling metastases and the experience of dying from prostate cancer are horrific in themselves. In the Kishan study among top institutions, there is greater confidence than in many studies that deaths due to prostate cancer could be distinguished from death from other causes. Still, overall survival is impaired in patients with cancer, even if the cancer itself isn't the ultimate cause of death.

Although several randomized clinical trials (RCTs) have demonstrated significant improvements in progression-free survival from BBT compared to EBRT, none have yet demonstrated improvements in overall survival. We saw this recently in the 2005 Sathya RCT. But the prostate cancer-specific mortality advantage of BBT has been confirmed in another study. In a recent analysis of the SEER database, PCSM was 40% higher among patients who had EBRT compared to those who had BBT.

Other than the lack of metastasis data and PCSM in the NCDB, there were other important differences between the two studies. In the Ennis study, only 25%-35% were gleason 9 or 10, whereas all were in the Kishan study. Other differences included the lack of comorbidity data in the Kishan study, and the lack of adjuvant/salvage radiation data in the Ennis study.

Prostate cancer-specific mortality rates were cut in half by BBT, and metastases were only a fraction compared to the other treatments. While this does not prove causality (only a randomized clinical trial can do that), it is highly suggestive that escalated dose can provide lasting cures. There may be good reasons why some high risk patients may have to forgo brachy boost therapy in favor of high dose EBRT or RP with adjuvant EBRT, but for most, brachy boost therapy will probably be the best choice. Patients who are treated with EBRT only, should receive a radiation dose of at least 79.2 Gy and two years of adjuvant ADT.

Sadly, a recent analysis of the National Cancer Database showed that utilization of brachy boost therapy for high risk patients has declined precipitously from 28% in 2004 to 11% in 2013. If a patient sees anyone other than the first urologist, he often only sees a single radiation oncologist who only informs him about IMRT. In most parts of the US, there is a dearth of experienced brachytherapists.

- with thanks to Amar Kishan for allowing me to see the full text.

Wednesday, December 27, 2017

Is ADT still needed for high risk patients receiving brachy boost therapy?

Brachy boost therapy (external beam plus a brachytherapy boost to the prostate) is the gold standard for high risk patients, reporting the best oncological outcomes of any therapy. While long-term adjuvant ADT has proven to be beneficial in prolonging survival in high risk patients when used in conjunction with dose-escalated external beam radiation (DART 01/05 GICOR), there has never been a randomized trial to determine if there is any benefit to ADT when used with brachy boost therapy.

All we have to go by are several single or multi-institutional studies and one large database analysis. Almost all of the studies so far show no effect to short-term (4 months, starting 2 months prior and running concurrent with the radiation therapy) adjuvant ADT.

Two of the studies used a boost of low dose rate brachytherapy, predominantly using Pd-103 seeds. Dattoli et al.  found there was no significant difference in 16-year PSA progression-free survival (PSA-PFS) whether 4 months of ADT were added or not. D'Amico et al. also found no significant difference in 8-year prostate cancer specific mortality (PCSM) with the addition of ADT. However, they felt that it was "approaching significance" (p=.08) and might become statistically significant with longer follow-up. In contrast to the Dattoli study, the D'Amico study did not treat the pelvic lymph nodes.

A recent analysis of the large National Cancer Database by Yang et al. did not detect any benefit to adding ADT on 8-year overall survival (OS). The database lacks specific information about type of brachytherapy, radiation doses, duration of ADT, and whole-pelvic treatment,

Several studies that used high dose rate brachytherapy as a boost also looked at this issue retrospectively. Demanes et al. was the earliest of those studies. They found no difference in 10-year PSA-PFS in their 113 high risk patients treated between 1991-1998. Several subsequent studies confirmed those findings. Galalae et al. concatenated the databases from 3 institutions: Kiel University, University of Washington Seattle and William Beaumont Hospital. Short-term adjuvant ADT failed to demonstrate improved 10-year PSA-PFS in the 359 high risk patients treated between 1986 and 2000. And the lack of effect was demonstrated at all three institutions. Kotecha et al. also failed to find any differential improvement in 5-year PSA-PFS among 61 high risk patients treated with HDR brachy boost at Memorial Sloan Kettering between 1998 and 2009.

There has been one "outlier" study. Schiffmann et al. reported on 211 consecutive high-risk patients treated at the University Medical Center Hamburg-Eppendorf from 1999 to 2009. After 10 years, the biochemical recurrence-free survival was 50% with the adjuvant ADT but only 39% without it - a very statistically significant and meaningful difference. However, even the "improved" outcome seems low compared to the ASCENDE-RT trial where everyone got early neoadjuvant and adjuvant ADT. In that trial, the 9-year PSA-RFS for high risk patients receiving the trimodality therapy was 83%. Another multi-institutional study of HDR-brachy boost therapy reported 10-year PSA PFS of 85% with ADT and 81% without ADT in high risk patients. It is plausible that the patients in the Hamburg study had more advanced disease and had more undetected micrometastases compared to the other studies.

The following table summarizes the treatments given in the aforementioned studies, and whether there was a statistically significant improvement (p<.05).




Relative BED is the biologically effective radiation dose as a percent of the BED of 79.4 Gy of IMRT in 44 fractions.


Short-term vs. Long-term Adjuvant ADT

ADT is believed to have two effects when used in conjunction with radiation. Used before radiation begins (neoadjuvant use) and during radiation treatments (concurrent use), it radio-sensitizes the cancer. Lab findings suggest that it interferes with cancer cell repair of the induced DNA double-strand breaks. Used after radiation (adjuvant use), ADT is believed to "clean up" any remaining local micrometastases that survived. The death of cancer cells from both the radiation and the ADT dumps antigens into the serum that may activate T-cells. Those T-cells may hunt out and destroy small amounts of cancer cells nearby (the bystander effect) or systemically (the abscopal effect).

The bulk of the above retrospective studies suggest that the radiosensitizing effect is unnecessary with the very high radiation doses given with brachy boost therapy. However, what remains to be shown is whether long-term ADT might confer any additional benefit. The DART 01/05 GICOR trial proved that there was a significant benefit to 28 months of ADT compared to 4 months in high risk patients treated with dose-escalated EBRT. It is possible that while short-term ADT may have no benefit, long-term ADT combined with brachy boost therapy might.

TROG 03.04 RADAR was an Australian randomized trial that was designed to detect whether Zometa and longer duration of ADT (18 months vs 6 months) could provide better cures when combined with varying doses of radiation (radiation dose received was stratified but not randomized). Some of the patients received brachy boost therapy. In general, it found that higher radiation doses combined with longer duration of ADT provided the best outcomes. However, among those patients who received HDR brachy boost therapy, there was no significant difference in local progression (fig.2 - showing overlapping standard error bars) whether they received 18 months or 6 months of ADT. Future follow-up may reveal whether long-term ADT prevents distant progression.

The very high rates of cancer control (around 80%-85%) using brachy boost therapy may be as high as we can reasonably hope for, given that there will always be some patients with undetected occult micrometastases.

Better patient selection

High-risk patients are usually given a bone scan and CT to help rule out distant metastases. Bone scans are non-specific to prostate cancer and are not very sensitive when the PSA is below 20 ng/ml. CT scans detect metastases larger than about 1.2 cm, but most metastases are smaller than that. The newly-approved Axumin PET scan, and the experimental PSMA-based PET scans now in clinical trials may be able to detect those distant metastases earlier. However, there are currently no PET scans approved for high-risk patients outside of clinical trials (they are only approved for recurrent and advanced cancer patients). In the future, those high-risk men in whom metastases have been detected via PET scans may be better candidates for systemic therapies, while those in whom no metastases have been detected may be better candidates for brachy boost therapy. It may be economically justifiable to use PET scans for this purpose. Perhaps we will see another 5-10% increase in cancer control rates, even without ADT, with better patient selection. A recent analysis of recurrent patients after prostatectomy diagnosed using the Ga-68-PSMA PET/CT found that 12% had previously undetected metastases outside of the radiation treatment field.

Dose Escalation

At the high biologically effective doses (BEDs) used in all the brachy boost studies, there does not seem to be a significant interaction between dose used and whether ADT was effective. The Dattoli study had the lowest BED, but no benefit to added ADT, while the Galalae study had the highest BED, but also no benefit to added ADT. The Hamburg study had high BED but did demonstrate a benefit to added ADT. All of the brachy boost studies seem to have adequate radiation doses.

Whole Pelvic Radiation

It is possible that pelvic lymph nodes are best treated with a combination of radiation and ADT.  Bittner et al. looked at 186 high risk patients treated with the brachy boost  therapy. The 10-year PSA-PFS was:

  • 94% if they received both whole pelvic radiation and ADT
  • 82% if the received whole pelvic radiation without ADT
  • 90% if they received ADT without whole pelvic radiation
  • 75% if they received neither ADT nor whole pelvic radiation


ADT seemed to have a bigger effect than whole pelvic radiation. This may be because the whole pelvic radiation dose is inadequate. The doses given to the pelvic lymph nodes are quite a bit lower (about 50 Gy in 28 fractions) than the dose to the prostate. If Dr. King is right that prostate cancer is inherently radioresistant and requires a higher lethal dose (about 79.2 Gy/44 fx) to be effective, even when the cancer is only in the prostate bed (see this link), it is possible that pelvic lymph nodes require a higher dose as well. Because of the potential bowel toxicity of escalated pelvic doses, adjuvant ADT may be necessary to achieve effective cell kill rates without dose-limiting toxicity. We saw in a recent analysis that, in the salvage situation among patients with GS 8-10, whole pelvic radiation and ADT both had significant benefits. Whether whole pelvic radiation is effective in high risk patients treated with brachy boost therapy and ADT is the subject of a major ongoing randomized clinical trial (RTOG 0924).

Retrospective vs Prospective Trials

All of the published studies so far have been retrospective and are therefore subject to selection bias: those who received the ADT had more progressed disease than those who received the brachy boost without ADT. Therefore, it will always be impossible to convincingly resolve this issue without a prospective randomized clinical trial.

Patient decisions

Until we have definitive results from randomized clinical trials, the decision over whether to add ADT to brachy boost therapy will be challenging. Many patients are persuaded by the extra insurance ADT provides, and that only a short course seems to be necessary. Others are so ADT-averse that even a short course is unthinkable, especially with no concrete evidence of efficacy.

The decision over whether to include the whole pelvic area in the external beam radiation field may be an easier decision. High risk patients have a significant probability that there are small metastases harbored in pelvic lymph nodes. Recent studies have shown the treatment field must be wider than  was previously thought. For some patients with anatomical abnormalities, low visceral fat, and a history of bowel disease, this too may present a challenging decision.



Thursday, October 26, 2017

Why did biochemical control not translate into a survival increase after brachy boost therapy?

The first randomized clinical trial to prove that brachy boost (BB) therapy had better oncological outcomes among high risk patients was Sathya et al. (2005). After 5 years, 36% of those high-risk patients who received the brachy boost had a PSA recurrence vs. 66% of those who received external beam radiation (EBRT) only. In an update, the authors report that overall survival was not significantly different in the two groups. This seems to call into question whether PSA recurrence is a useful surrogate endpoint for survival, or if it is, under what circumstances?

Dayes et al. provided a 14-year median update on the original study and added further comments in this "Beyond the Abstract" essay. The 104 patients in the original study who were treated between 1992 and 1997 had the following characteristics and treatments:

  • Median age was 66
  • 60% were high risk, 40% intermediate risk
  • All had a negative pelvic lymph node dissection, negative bone scan and CT
  • Brachy boost (BB) comprised 35 Gy of Ir 192 over 48 hours plus 40 Gy of EBRT in 20 fractions for a total of 75 Gy [sic].
  • EBRT-only compromised 66 Gy delivered in 33 fractions using 2DRT (an outmoded external beam technology).
  • None received androgen deprivation as part of their radiation therapy, nor afterwards unless PSA reached 20 ng/ml.

As of the update on the 104 patients (with only 5 lost to follow-up):

  • Mortality from any cause was 67% among the BB patients, 77% among the EBRT-only patients -- not significantly different
  • Prostate cancer-specific mortality was 18% among the BB patients, 23% among the EBRT-only patients - not significantly different
  • Incidence of metastases was 20% among the BB patients, 28% among the EBRT-only patients - not significantly different
  • Improvement in PSA control was maintained: 47% higher rate of biochemical recurrence-free survival among the BB group

There was a biopsy given 2 years after treatment to 87 of the 104 men in the original study

  • In the BB group, 24% had a positive biopsy and 6% were metastatic
  • In the EBRT-only group, 51% had a positive biopsy and 6% were metastatic

The authors conclude:
Despite ongoing benefit with respect to biochemical disease control, long term follow up out to 2 decades failed to demonstrate improvements in other important outcomes such as development of metastatic disease, deaths from prostate cancer and deaths from any cause. 
Increased biochemical (PSA) control usually translates into increased survival later on. That correlation is well-characterized. So why did it not in this case?

This study, with a sample size of only 104 (51 BB, 53 EBRT-only), was not large enough to detect statistically significant survival differences. We note that directionally there was an improvement in survival even though the difference wasn't big enough for 95% confidence. Also, 40% were intermediate risk patients who are slower to have detectable metastases and are more likely to die of other causes. By contrast, the ASCENDE-RT trial of LDR brachy boost therapy recruited 398 men, 30% were intermediate risk, and may eventually be able to demonstrate overall survival differences with longer follow-up.

We have to acknowledge that the doses delivered in this study were below what is now considered curative, and the findings here are to a large extent irrelevant. I am at a loss to explain how a hot iridium implant could be left in a patient for 48 hrs without doing serious damage or cooking the prostate to a crisp.  Perhaps they used cooler implants back then.  I can only trust that Dr. Sathya is correct in not making a correction for the lack of fractionation, which would be typical. It seems the BB dose was sub-optimal as demonstrated by the fact that in a quarter of men, the cancer was left alive in the prostate. EBRT-only was worse - leaving cancer alive in the prostates of twice as many men. Although they dissected some pelvic lymph nodes that they could find, we now know that even with improved modern lymph node detection methods, we miss 44% of positive lymph nodes (see this link). The 6% who were metastatic might have been caught with some of our new PET scans. So, in both groups, there was a lot of cancer left behind. Many high-risk radiation patients today would have had whole-pelvic radiation and would have had hormone therapy for up to two years. This highlights the importance of expanding the treated area, using escalated doses, and adding systemic therapy when the probability is high that the cancer might have escaped the prostate.

Even though BB wasn't curative for many high risk patients, it is disappointing that death was not delayed by reducing the tumor burden. There are several clinical trials of treating the prostate (with surgery or radiation) even after metastases have been detected, thereby hoping to prolong survival by reducing the load of cancer cells. Metastasis-directed radiation is sometimes given in this hope as well. Both of those therapies decrease PSA, at least temporarily. But only treating PSA serves no purpose if that is the only outcome. If this study is any indication, the cancer will catch up and replace the killed cells with no net survival benefit. I hope that is not the case.

Saturday, May 20, 2017

Brachy boost therapy should be reserved for unfavorable risk patients

The ASCENDE-RT trial showed that oncological outcomes were improved among both intermediate risk and high risk men who were treated with external beam radiation (EBRT) and a brachytherapy boost (LDR-BT) to the prostate and adjuvant androgen deprivation therapy (ADT) (see this link). A new study from the University of Michigan suggests that the benefit in intermediate risk men is exclusively among those who have been diagnosed with unfavorable intermediate risk prostate cancer.

They used the NCCN definitions:
  • Favorable intermediate risk: Gleason score 3+4 and PSA< 10 ng/ml and stage T1/T2a and <50% of biopsy cores were positive
  • Unfavorable intermediate risk: All other intermediate risk

Abugharib et al. retrospectively reported the outcomes of 579 intermediate risk men treated with either EBRT alone or EBRT+LDR-BT between 1995 and 2012. After a median follow-up of 7.5 years:

  • The 10-year biochemical recurrence free survival was 92% for the brachy boost therapy vs. 75% for EBRT alone
  • Recurrences were cut in half (hazard ratio= 0.48) by the brachy boost after correcting for known confounders
  • The improvement due to the boost was only seen in the "unfavorable intermediate risk" group, but not in the favorable intermediate risk group.
  • 10-year distant metastasis-free survival did not differ by risk group.
  • 6-year cumulative incidence of grade 3 urinary toxicity was 3.5 times higher among men who received brachy boost therapy.
  • Toxicity was transient and resolved completely in 57%, partially in 29%, and persisted in only 1 patient.

We recall that ASCENDE-RT reported nearly identical oncological and toxicity outcomes:

  • Among those with intermediate-risk prostate cancer, 9-year bPFS was 94% for the brachy boost cohort vs. 70% for EBRT-only.
  • Late term Grade 3 GU toxicity reached 19% for the brachy-boost group vs. 5% for the EBRT-only group (3.8 times higher).

Although this was not a randomized clinical trial like ASCENDE-RT, the similarity helps lend credence to their study.

There was a randomized clinical trial RTOG 0232 (see this link) that also showed no benefit to the brachy boost among favorable intermediate risk men.

While ten years is not long enough to evaluate differential effects on metastases and mortality, we may infer from the large difference in the 10-year failure rate that those differences will probably eventuate in more metastases and deaths later on.

It appears that men with unfavorable intermediate risk prostate cancer may benefit from brachy boost therapy. However, men with favorable intermediate risk prostate cancer are at risk of much greater long-term urinary toxicity with no oncological benefit whatever. We can reasonably infer that men with low risk prostate cancer, who may be safely watched with active surveillance, would derive no benefit and only greater toxicity from the combination therapy. Unfortunately some clinics, notably the Radiotherapy Clinics of Georgia, infamously treat even low risk patients with brachy boost therapy (which they market as ProstRCision).

Thursday, March 30, 2017

Revised ASCO/CCO brachytherapy guidelines

The publication of the ASCENDE-RT clinical trial (discussed here) has led to a revision in the brachytherapy guidelines (available here) issued by the American Society of Clinical Oncology (ASCO) and Cancer Care Ontario (CCO). The guidelines are for patients who choose radical therapy rather than active surveillance. They based their guidelines only on randomized clinical trials that included brachytherapy as an option.  They exclude high dose rate brachytherapy (HDR-BT) as a monotherapy because it has not been proven in a randomized clinical trial.

Their guidelines suggesting which therapies are suitable are stratified by patient risk level:

Low Risk
  • Low dose rate brachytherapy (LDR-BT) alone
  • External Beam Radiation Therapy (EBRT) alone, or
  • Radical prostatectomy (RP)

Intermediate Risk

For favorable intermediate risk patients (no Gleason score> 3+4, no more than half the cores positive, PSA<10, and stage<T2b):
  • LDR-BT alone
For other intermediate risk patients:
  • EBRT with or without androgen deprivation therapy (ADT) and a brachy boost (LDR-BT or HDR-BT) to the prostate.

High Risk:
  • EBRT and ADT and a brachy boost (LDR-BT or HDR-BT)

They make the following qualifying statements:
  • Patients should be counseled about all their management options (surgery, EBRT, active surveillance, as applicable) in a balanced, objective manner, preferably from multiple disciplines.
  • Recommendation for low-risk patients is unchanged from initial guideline, because no new randomized data informing this question have been presented or published since.
  • Patients ineligible for brachytherapy may include: moderate to severe baseline urinary symptoms, large prostate volume, medically unfit, prior transurethral resection of the prostate, and contraindications to radiation treatment.
  • ADT may be given in neoadjuvant, concurrent, and/or adjuvant settings at physician discretion. It is noted that neoadjuvant ADT may cytoreduce the prostate volume sufficiently to allow brachytherapy
  • There may be increased genitourinary toxicity compared with EBRT alone.
  • Brachytherapy should be performed at a center following strict quality-assurance standards.
  • It cannot be determined whether there is an overall or cause-specific survival advantage for brachytherapy compared with EBRT alone, because none of the trials were designed or powered to detect a meaningful difference in survival outcomes.
Neither the patient nor the doctor should take these to be their only options. ASCO/CCO only included options for which there is Level 1 evidence; that is, evidence from  randomized comparative clinical trials. Patients, doctors and insurance providers should make treatment decisions based on the full array of available clinical data, understanding that higher level evidence carries more weight.

Wednesday, March 15, 2017

Brachy Boost: The gold standard for progression-free survival of high risk prostate cancer

Several randomized clinical trials have established the superior oncological outcomes of the combination of external beam radiotherapy with a high dose rate brachytherapy boost (see this link). Last year, the results of the first randomized clinical trial of the combination of external beam radiotherapy with low dose rate brachytherapy, the ASCENDE-RT trial, was presented at the 2015 Genitourinary Conference (reported here). We now have the full details of the oncological outcomes (toxicity outcomes will be reported separately).

Morris et al. reported on 398 intermediate (31%) and high risk (69%) patients treated at 6 facilities in British Columbia and Toronto. All patients received 12 months of androgen deprivation beginning 8 months before radiation therapy. and continuing 4 months after the start. Androgen deprivation consisted of a GnRH agonist (Eligard or Suprefact) with an antiandrogen (bicalutamide or flutamide) given for the first 4 weeks. The radiation treatment was either of:
  • EBRT-only: 78 Gy in 39 fractions using 3D-CRT
  • Brachy boost: 46 Gy in 23 fractions of EBRT (3D-CRT) + 115 Gy of I125 seeds
It is worth noting that the brachy boost dose used in this trial is compared to an EBRT dose that is considered to be high enough to be curative by today's standards.

With 6.5 years of median follow-up, the 9-year biochemical progression-free survival (bPFS) was:
  • 85% for the brachy boost cohort vs. 65% for EBRT only
  • The hazard ratio was 2.3 (i.e., those getting EBRT only were 2.3 times as likely to relapse compared to those getting the brachytherapy boost)
  • Among those with high-risk prostate cancer, 9-year bPFS was 83% for the brachy boost cohort vs. 62% for EBRT-only.
  • Among those with intermediate-risk prostate cancer, 9-year bPFS was 94% for the brachy boost cohort vs. 70% for EBRT-only.
  • Among those who did not relapse, the median nadir PSA was 0.01 ng/ml (54% undetectable) for the brachy boost cohort vs. 0.25 for EBRT-only (8% undetectable).
  • In this length of follow-up, metastases, prostate cancer-specific mortality, and overall mortality were rare events, and were not statistically significantly different. Median age was 68.
This analysis did not address toxicity outcomes, but, as previously reported, the improved oncological outcomes came at the expense of toxicity:
  • Late term Grade 2 or higher genitourinary (GU) toxicity was higher for the brachy-boost group. 
  • Late term Grade 3 GU toxicity reached 19% for the brachy-boost group vs. 5% for the EBRT-only group. 
  • Late term gastrointestinal (GI) toxicity was similarly mild for both groups.
The use of 3D-CRT rather than IMRT (which is now the more prevalent form of EBRT) probably affected toxicity, especially with the wider field of the brachy-boost therapy.

This should establish brachy boost therapy (using either a high dose rate or low dose rate brachy boost) as the gold standard for oncological control for high risk prostate cancer. Perhaps equivalent outcomes with less toxicity may be achievable for both high risk and intermediate risk patients using high dose rate brachy monotherapy, SBRT monotherapy, or SBRT boost therapy. But for now, those are experimental approaches in high risk patients. The optimal duration of ADT use has yet to be defined. Patients with pre-existing urinary conditions should approach boost therapy with caution.

Sadly, a recent analysis of the National Cancer Database showed that utilization of brachy boost therapy for high risk patients has declined precipitously from 28% in 2004 to 11% in 2013. If a patient sees anyone other than the first urologist, he often only sees a single radiation oncologist who only informs him about IMRT. In most parts of the US, there is a dearth of experienced brachytherapists.

note: Thanks to Dr. James Morris for allowing me to review the full text.

Wednesday, September 28, 2016

Brachytherapy alone is enough for favorable intermediate risk patients

RTOG 0232 was a large clinical trial conducted to determine whether low dose rate brachytherapy (BT) alone was of equal benefit compared to external beam radiation therapy with a brachytherapy boost (EBRT+BT) in intermediate risk patients.

The study was conducted at 68 cancer centers in the US and Canada from 2003 to 2012. 588 intermediate risk men were treated. For the purposes of this study, “intermediate risk” was defined as:
  • Stage T1c – T2b, and
  • Either Gleason Score of 7 and PSA less than 10 ng/ml, or
  • Gleason score of 6 and PSA between 10 and 20 ng/ml
They did not collect detailed data and report separately those who would now be classified as “favorable intermediate risk” by the Zumsteg definition (Gleason score 3+4, less than half the biopsy cores positive, and otherwise low risk). However, Howard Sandler, the Principal Investigator, wrote:
It was deliberately a favorable intermediate group largely. At the time (2002) we felt that combination therapy was mandatory for the more advance patients and we weren’t comfortable randomizing to brachy alone for those patients.

So it is important that we do not generalize their findings to unfavorable intermediate-risk or high-risk patients.

The patients were treated as follows:
  • BT: 145 Gy of I-125 seeds or 125 Gy of Pd-103 seeds
  • EBRT+BT: 45 Gy of EBRT and a boost with 110 Gy of I-125 seeds or 100 Gy of Pd-103 seeds
After 5 years of follow-up:
  • Progression-free survival was 85% for EBRT+BT patients, 86% for BT patients (no difference)
  • Acute grade 3 (serious) side effects were suffered by 8%  in each group.
  •  Late-term grade 3 (serious) side effects were higher (12%) in the EBRT+BT compared to 7% in the BT group
o   Urinary side effects: 7% in the EBRT+BT group vs. 3% in the BT group
o   Rectal side effects: 3% in the EBRT+BT group vs. 2% in the BT group

So, the addition of external beam radiation added nothing to cancer control, at least out as long as 5 years. While side effects were low for both groups, combination therapy increased them.

We saw recently in an analysis of the patients at Cleveland Clinic who were treated exclusively with BT only (see this link, especially the section on intermediate risk), that progression-free survival was very good for “low intermediate risk” patients. Furthermore, Drs. Stone and Zelefsky agreed that the combination therapy is unnecessary for this group, especially when treated with a sufficient brachytherapy dose. Radiotherapy Clinics of Georgia has built a business out of treating even low-risk patients with the combination therapy. This is now proved to be an overtreatment that is needlessly toxic.


Monday, August 29, 2016

How long is long enough? Length of follow-up on clinical trials for primary treatments

Many of us are faced with the difficulty of choosing a primary therapy based on data from clinical trials with follow-up shorter than our life expectancy. How can we know what to expect in 20 or 30 years? This is quite apart from the fact that most published studies only tell us how the treatment worked for a chosen group of patients treated by some of the top doctors at some of the top institutions – they never predict for the individual case that we really want to know about; i.e., “me.” The issue of length of follow-up is particularly problematic for radiation therapies, although it may be too short for surgery and active surveillance studies as well. How can we make a reasonable decision given the uncertainty of future predictions?

I may have missed some studies, but the longest follow-up studies I have seen for each primary therapy treatment type are as follows:

• HDR brachy monotherapy - 10 years (
CET/Demanes)
• HDR brachy+EBRT - 15 years (
Kiel, Germany)
• IMRT - 10 years (
MSKCC)
• LDR brachy monotherapy - 12 years (
UWSeattle & Mt. Sinai)*
• LDR brachy+EBRT - 25 years (
RCOG)
• Protons- 10 years (
Loma Linda)
• SBRT - 9 years (
Katz)
• Robotic RP - 10 years (
Henry Ford Hospital, Detroit)
• Laparoscopic RP - 10 years (
Heilbronn, Germany)
• Open RP - 25 years (
Johns Hopkins)
• Active Surveillance - 20 years (
Toronto)

*Mt. Sinai published a study with longer follow-up (15 years); however, all patients were treated from 1988 to 1992, before modern methods were used, and such results are irrelevant (see below) for decision-making today.

On a personal note, I was treated at the age of 57 and had an average life expectancy of 24 years, possibly more because I have a healthy lifestyle and no comorbidities. So there were no data that could help me predict my likelihood of cause-specific survival and quality of life out to the end of my reasonably expected days. What's more, the therapies with the longest follow-up (open RP, brachy boost) also have the highest rates of serious side effects. With my low-risk cancer, there seemed little need to take that risk with my quality of life.

While we may be tempted to wait for longer follow-up, (1) we don't always have that luxury, and (2) there very likely will not
 be any longer follow-up. Not only is follow-up expensive, there are also the problems of non-response, drop-outs, and death from other causes. The median age of patients in radiation trials is typically around 70, so many will leave the study. The 10-yr Demanes study, for example, started with 448 patients, but there were only 75 patients with 10 years of follow-up. The “10-year” study of IMRT at MSKCC started with 170 patients, but only 8 patients were included for the full ten years! After the sample size gets this small, we question the validity of the probability estimates, and there is no statistical validity in tracking further changes. (It is worth noting that IMRT became the standard of care without longer term or comparative evidence.)

An even bigger problem is what I call
 irrelevance. Technological and medical science advances continue at so brisk a pace that the treatment techniques ten years from now are not likely to resemble anything currently available (another argument for active surveillance, if that's an option). Dose escalation, hypofractionation, IGRT technology, intra-operative planning, VMAT, variable multi-leaf collimators, on-board cone-beam CT, and high precision linacs - all innovations that have mostly become available in the last 15 years - have dramatically changed the outcomes of every kind of radiation therapy, and made them totally incomparable to the earlier versions. Imagine shopping for a new MacBook based on the performance data of the 2000 clamshell iBook. By the time we get the long-term results, they are irrelevant to the decision now at hand.

What we want to learn from long-term clinical trials are the answer to two questions: (1) Will this treatment allow me to live out my full life? and (2) what are the side effects likely to be? To answer the first question, researchers look at prostate cancer-specific survival. It’s not an easy thing to measure accurately – cause of death may or may not be directly related to the prostate cancer. We usually look at overall survival as well. For a newly diagnosed intermediate risk man, prostate cancer survival is often more than 20 years, so we can’t wait until we have those results to make a decision. Taking one step back, we look at metastasis-free survival, but that is often over 15 years. Sometimes there is clinical evidence of a recurrence before a metastasis is detected (e.g., from a biopsy or imaging). More often, the only timely clue of recurrence is biochemical – a rise in PSA over some arbitrary point. That point is set by consensus. Researchers arrived at the consensus after weighing a number of factors, especially its correlation with clinically-detected progression. Biochemical recurrence-tree survival (bRFS), or its inverse, biochemical failure (BF), is the most commonly used surrogate endpoint.

We might be comfortable if outcomes seem to have reached a plateau. For some of the above studies, we are able to look at some of the earlier reported biochemical failure rates compared to those measures reported at the end of the study (ideally broken out by risk group).
  • ·      In the Demanes Study, the 10-year results are virtually unchanged from the 8-year results.
  • ·      In the Kiel study of HDR brachy boost, the 5-, 10- and 15-year BF was 22%, 31%, and 36%.
  • ·      In the RCOG study of LDR brachy boost, the 10-, 15-, 20- and 25-year BF was 25%, 27%, 27%, and 27%
  • ·      In the Mt. Sinai study of LDR brachy, the 8- and 12-yr BF was 12% and 10% for low risk; 19% and 16% for intermediate risk; 35% and 36% for high-risk patients.
  • ·      In the MSKCC study of IMRT, the 3-, 8- and 10-yr BF was 8%, 11%, and 19% for low risk; 14%, 22% and 22% for intermediate risk; 19%, 33% and 38% for high risk patients.
  • ·      In the Katz SBRT study, the 5- and 7-year BF was 2% and 4% for low-risk, 9% and 11% for intermediate-risk, and 26% and 32% for high-risk patients.
  • ·      For comparison, the 5- 10- 15- and 25- year recurrence rates for prostatectomy at Johns Hopkins were 16%, 26%, 34% and 32%.

For most of the therapies, HDR & LDR brachy monotherapy, LDR brachy boost therapy, and SBRT, the failure rates remained remarkably consistent over the years. However, for surgery and IMRT, failure rates increased markedly in later years. Most of us can’t wait 25 or more years to see if a therapeutic option remains consistent or not, and for radiation, the results would almost assuredly be irrelevant anyway.

Ralph Waldo Emerson is misquoted as saying, “Build a better mousetrap, and the world will beat a path to your door.” An important criterion for decision-making when there is only limited data is our answer to the question: Is this a better mousetrap? Arguably, robotic surgery was only an improvement over open surgery, and not an entirely new therapy requiring separate evaluation. It has never been tested in a randomized comparison, and I doubt we will ever know for sure. Arguably, IMRT was simply a “better mousetrap” version of the 3DCRT technique it largely superseded and didn’t need a randomized comparison to prove its worth. Was HDRBT monotherapy just an improvement over HDRBT+EBRT? Was SBRT just an improvement over IMRT, or should we view it as a variation on HDRBT, which it radiologically resembles by design? There are no easy answers to any of these questions. However, as a cautionary note, I should mention that proton therapy was touted as more precise because of the “Bragg peak effect,” yet in practice seems to be no better in cancer control or toxicity than IMRT.

There is also the problem of separating the effect of the therapy from the effect of the learning curve of the treating physician. Outcomes are always better for patients with more practiced physicians. The learning curve has been documented for open and robotic surgery, but less well documented for radiation therapies. Patients treated early (and perhaps less skillfully) in a trial are over-represented in the latest follow-up, and there may be very little follow-up time on the most recently (and perhaps more skillfully) treated patients.

So when do we have enough data to make a decision? That comfort level will vary among individuals. I was comfortable with 3-year data based on choosing a theoretically “better mousetrap”, and many brave souls (thank God for them!) are comfortable with clinical trials of innovative therapies. In the end, everyone must assess for himself how long is long enough. For doctors offering competing therapies and for some insurance companies, there never seems to be long enough follow-up. I suggest that patients who are frustrated by those doctors and insurance companies challenge them to come up with concrete answers to the following questions:
  • ·      What length of follow-up do you want to see, and why that length?
  • ·      What length of follow-up was used to determine the standard of care?
  • ·      Do you need to see prostate-cancer specific survival, or are you comfortable with an earlier surrogate endpoint?
  • ·      What is the likelihood of seeing longer term results, and will there be any statistical validity to them if we get them?
  • ·      Have outcomes reached a plateau already?
  • ·      What evidence is there that toxicity outcomes change markedly after 2 years?
  • ·      Will the results still be relevant if we wait for longer follow-up?
  • ·      Is the therapy just a “better mousetrap” version of a standard of care?
  • ·      Are my results likely to be better now that there are experienced practitioners?

Brachy boost may lower mortality in high-risk patients

 The ASCENDE-RT randomized clinical trial demonstrated that the combination of external beam radiation with a brachytherapy boost (EBRT+BT) significantly reduced biochemical progression-free survival. A new data analysis suggests that the benefit may extend to prostate cancer survival as well.

Xiang and Nguyen searched the SEER database to identify 52,535 high- and intermediate-risk patients who were treated with EBRT+BT or EBRT alone in 2004-2011. Of that total, 20% received EBRT+BT, and one-third were high risk. They matched patients for risk factors, and adjusted for other variables that affect survival. By 8 years after treatment, the adjusted prostate cancer-specific mortality was:
  • ·      1.8% for EBRT+BT
  • ·      2.7% for EBRT
  • ·      5.4% for EBRT+BT among high-risk patients
  • ·      7.6% for EBRT among high-risk patients
  • ·      Mortality was not significantly reduced among intermediate-risk patients

The authors conclude:
BT boost was associated with a moderate reduction to PCSM in men with localized unfavorable-risk prostate cancer. Those most likely to benefit are younger patients with high-risk disease.”

Of course, this was a database analysis and not a randomized clinical trial, so the findings are provisional until better data are available. The mortality numbers are small, reflecting the long natural history of prostate cancer progression even among high risk patients, and the fact that at modern dose levels, both the monotherapy and the combined modality may cure or delay progression for a long time. As we’ve seen, the combined modality approach does increase the side effects of treatment. The fact that there is so far no discernable survival benefit for intermediate risk patients, should dissuade those with “favorable intermediate risk” prostate cancer from pursuing boost therapy. Each unfavorable risk patient will have to assess for himself whether the added toxicity is worthwhile.


Sunday, August 28, 2016

HDR Brachy Boost and Monotherapy for High-Risk Prostate Cancer

Three randomized clinical trials (Sathya et al. 2005, Hoskin et al.2012, and Guix et al.2013) established combination therapy of external beam radiation (EBRT) with a high dose rate brachytherapy (HDRBT) boost as a standard of care in the treatment of high-risk prostate cancer. In all three of those trials, the outcomes exceeded those from EBRT alone, but at a cost of higher toxicity.

In previous studies of this combination therapy for high-risk patients, freedom from biochemical relapse have ranged from 67-97% at 5 years, and from 62 -74% at 10 years. Late term genitourinary (GU) grade 3 toxicity ranged from 0-14.4% (median 4.5%); gastrointestinal (GI) grade 3 toxicity ranged from 0-4.1% (median .5%); chronic incontinence ranged from <1%-3.8%; urethral strictures ranged from .9-7.4% (median 4.5%); and erectile dysfunction ranged from 10-51% (median 31.5%).

It may be helpful to understand how large the effective doses of radiation were that were used in all of the aforementioned studies. The term “biologically effective dose” (BED) enables us to compare the cancer-killing power of the absorbed radiation across different radiation modalities. To provide a point of comparison, I show the BED as a % of the BED of a typical modern IMRT schedule, 80 Gy in 40 fractions (fx), which has a BED of 187 Gy.

Table 1 – Improved recurrence-free survival, but higher GU toxicity from boost therapy

Study
Modalities
Dose Schedule
BED
Compared to 80 Gy IMRT
Freedom from recurrence among high risk
Follow up
Late grade 3 GU toxicity
Sathya et al. (2005)
HDRBT
+ EBRT
35 Gy over 48 hrs.
+40 Gy/20 fx
-6%
71%
8.2 yrs median
14%
EBRT only
66 Gy/33 fx
-17%
39%
8.2 yrs median
4%
Hoskin et al. (2012)
HDRBT
+ EBRT
17 Gy/2 fx + 35.75 Gy/13 fx
+15%
66%
7 yrs
11%
EBRT only
55 Gy/20 fx
-17%
48%
7 yrs
4%
Guix et al. (2013)
HDRBT + EBRT
16 Gy/2 fx + 46 Gy/23 fx
+12%
98%
8 yrs
NA
EBRT only
76 Gy/38 fx
-5%
91%
8 yrs
NA



Could equal oncological outcomes be accomplished but with less toxicity by using high dose rate brachytherapy as a monotherapy? The maturing of data from a clinical trial in Japan suggests it can be.

Yoshioka et al. (2015) have used HDRBT monotherapy on 111 high-risk patients treated from 1995 to 2012. Almost all of them (94%) received ADT as well. They evaluated 3 dosing schedules: 48 Gy/8 fractions, 54 Gy/9 fractions, or 45.5 Gy/7 fractions inserted over 4 to 5 days. 

With a median of 8 years of follow up, the authors report:
  • ·      Biochemical no evidence of disease – 77%
  • ·      Metastasis-free survival – 73%
  • ·      Overall survival – 81%
  • ·      Cause-specific survival – 93%
  • ·      Late GU grade 3 toxicity – 1%
  • ·      Late GI grade 3 toxicity – 2%
Unfortunately, they haven’t reported rates of erectile dysfunction. Other monotherapy series report ED rates of about 25%, and there’s no reason to suppose it would be particularly different for high-risk patients. They report no significant differences in oncological control or toxicity according to total dose or dose schedule used.

The biochemical control rates are well within the range seen for combination therapy at 5 to 10 years after treatment. At the same time, the rates of serious late term GU and GI side effects seem to be improved by the monotherapy.

Other recent studies have reported excellent results for HDRBT monotherapy for high-risk patients. Zamboglou et al. (2012) reported the monotherapy outcomes of 146 high-risk patients treated between 2002 and 2009. 60% received ADT as well. They evaluated 3 dosing schedules: 38 Gy in four fractions in one implant, 38 Gy in four fractions in two implants, and 34.5 Gy in three fractions in three implants. After 5 years, biochemical control was 93%, late grade 3 GU toxicity was 3.5%, and late grade 3 GI toxicity was 1.6%. The differences in toxicity among the dosing schedules were not statistically significant. Among previously potent men, only 11% lost potency sufficient for intercourse. The highest dose schedule did not have better oncological control or worse toxicity than the lower dose schedules.

Hoskin et al. (2012) reported the monotherapy outcomes of 86 high-risk patients treated between 2003 and 2009. Almost all of them (92%) received ADT as well. They evaluated 4 dosing schedules: 34 Gy in four fractions, 36 Gy in four fractions, 31.5 Gy in three fractions, and 26 Gy in two fractions. After 4 years, biochemical control was 87%, late grade 3 GU toxicity was 12%, and late grade 3 GI toxicity was 1%. It is not clear why GU toxicity was higher than in the other two studies. They did not report erectile dysfunction. Although higher rates of strictures, ranging from 3-7%, and urinary toxicity occurred on the most aggressive dosing schedules, the differences were not statistically significant on this sample size. Similarly, the difference in recurrence-free survival at the lowest dose was not statistically significant.

Table 2. Clinical trials of HDRBT monotherapy for high risk

Study
Dose Schedule
BED
Compared to 80 Gy IMRT
Freedom from recurrence among high risk
Follow up
Late grade 2+ GU toxicity
Late grade 3+ GU toxicity
Yoshioka et al. (2015)
48 Gy/8 fx
+29%
77%

8 yrs

NA
1%
54 Gy/9 fx
+45%
7%
45.5 Gy/7 fx
+30%
6%
Zamboglou et al. (2012)
38 Gy/4 fx/1 implant
+49%
97%*
5 yrs
9% retention
9%incontinence
3% retention
1% incontinence
38 Gy/4 fx/2 implants
+49%
94%*
5 yrs
7% retention
5% incontinence
2% retention
<1%incontinence
34.5 Gy/3 fx/3 implants
+60%
95%*
3 yrs
5% retention
8% incontinence
1% retention
1% incontinence
Hoskin et al. (2012)
34 Gy/4 fx
+21%
77%
5 yrs (median)
33%
3%
36 Gy/4 fx
+35%
91%
4.5 yrs (median)
40%
16%
31.5 Gy/3 fx
+35%
87%
2.8 yrs(median)
34%
14%
26 Gy/2 fx
+35%
NA
.5 yrs (median)
NA
NA

*across all risk groups, high risk only was 93%

Within all three published studies, there were no statistically significant dose-response relationships in terms of either oncological control or toxicity. However, looking across the three, it may be that the higher doses provided better control at the cost of some higher toxicity. I hope someone will do a meta-analysis on the full data sets to confirm that. Larger studies will be needed to determine whether toxicity increases with the more aggressive dosing schedules. All the control rates were within the range of the combination therapies, and all of the toxicities were acceptable. Evidently, all of the studies applied enough radiation to effectively kill the high-risk cancer. Nor did the dosing schedule used have an impact on results. HDR brachy monotherapy as currently practiced uses anywhere from a single fraction to nine fractions, and anywhere from a single implant to three implants.

It is difficult to draw conclusions about the use of ADT. All three studies utilized high rates of adjuvant ADT – over 90% in two of the studies. The study with the lowest rate of ADT utilization, Zamboglou et al., at 60%, also used the highest radiation doses. Although Demanes et al. found that ADT had no incremental benefit when used with combination therapy, that study was in the early years (1991-1998) when relatively low radiation doses were used. Until there is a randomized clinical trial of its use with HDRBT monotherapy, it will be hard to walk away from using ADT.

Unlike low dose rate brachytherapy (seeds), HDRBT can treat areas outside of the prostate, including the prostate bed and the seminal vesicles. However, to my knowledge, it has not been used to treat pelvic lymph nodes, which would be impossible to find using current imaging technology. In all three studies, patients were screened for evidence of lymph node involvement. Clearly, HDRBT monotherapy is not a good choice if LN involvement is suspected. There are calculators for predicting such risk based on Gleason score, PSA and cancer volume. High-risk patients may have a statistically high risk for LN involvement without showing evidence, but even the “high risk” levels are not very high, so treatment remains controversial. One clinical trial (Lawton et al.) demonstrated a benefit to full-pelvic IMRT coupled with neoadjuvant ADT, and there is a current clinical trial that allows for a brachy boost (RTOG 0924) that may confirm that finding.

SBRT is radiologically identical to HDRBT, and as discussed in a recent article, its use for high-risk patients is also being explored. Both of these treatments have the potential to provide excellent cancer control while minimizing the side effects of treatment, and with a considerable time and cost advantage over IMRT-combo treatments. I encourage high-risk patients to enroll in clinical trials for both alternatives. HDRBT monotherapy for high risk is part of a clinical trial at Stanford (NCT02346253).