Thursday, June 3, 2021

Brief, intense radiation and hormone therapy for very high risk prostate cancer

As we've seen, brachy boost therapy seems to have the best oncological results for men with very high-risk prostate cancer. But brachy boost therapy entails 20-25 external beam radiation treatments plus the invasive placement of radioactive seeds or needles plus at least 18 months of testosterone suppression. While the oncological results are excellent, with about 80% cure rates, there is significant risk of serious late-term urinary retention. In some men, testosterone never fully recovers.

McBride et al. reported the early results of the AASUR trial. The goal of the trial was to find a treatment with equivalent oncological outcomes, but one that is easier on the patient, with less risk of long-term toxicity. They recruited 64 patients at 4 top institutions (Memorial Sloan Kettering, Johns Hopkins, University of Michigan, and Thomas Jefferson University). All patients were "very high risk," defined as:

  • any Gleason score (GS) 9 or 10, or
  • 4 or more cores of GS 8, or
  • 2 high-risk features (stage T3/4, GS 8, or PSA>20)
  • No metastases (N0, M0)

Patients were treated with:

  • SBRT (7.5-8.0 Gy x 5 treatments)
  • 6 months of Lupron, Erleada, and Zytiga

After 30 months of follow-up:

  • 89% were free of biochemical failure
  • Median PSA at the last follow-up was 0.1
  • PSA remained undetectable in 40%
  • Testosterone rose to non-castrate levels at a median of 6.5 months after hormone therapy ended, and almost all rose to >150 ng/dl
  • 23% experienced transient serious toxicities, mostly hypertension
  • Quality of life scores at 1 year held for urinary and rectal domains but declined in sexual and hormone domains.

How do these results compare to other trials of radiation+ADT in high-risk patients?

Lin et al. used whole pelvic IMRT with an SBRT boost to the prostate and 2 years of ADT in 41 high- and very high-risk patients. With 4 years of follow-up, they reported 92% biochemical recurrence-free survival (bRFS).

Hoskin et al. used high dose rate brachytherapy as a monotherapy in 86 high-risk patients. Most (80%) had adjuvant ADT for a median of 6.3 months (range 1-40 months). With 4 years of follow-up, they report 87% biochemical recurrence-free survival (bRFS) among high-risk patients.

Zapatero et al. reported the results of the DART 01.03 GICOR trial of escalated dose IMRT with either short-term (4 months) or long-term (28 months) ADT. There were 185 high-risk patients with about half getting each ADT protocol. About a quarter received simultaneous radiation of their pelvic lymph nodes. With 5 years of follow-up, they report 76% bRFS among high-risk patients who got short-term ADT and 88% bRFS among high-risk patients who got long-term ADT.

Alan Pollack reported early results of the NRG Oncology 0534 or SPPORT randomized clinical trial at the ASTRO meeting in 2018.  Approximately 600 patients with a biochemical failure after prostatectomy were treated with whole pelvic salvage radiation. They all received 4-6 months of adjuvant ADT. With 5 years of follow-up, they reported 89% bRFS. (They defined this second bRFS as nadir +2.0, as in radiation trials.)

This table summarizes these trials:


AASUR

SBRT boost

(Lin)

HDR-BT

(Hoskin)

IMRT

DART 

GICOR

IMRT

DART 

GICOR

SRT

SPPORT 

follow-up

2.5 yrs

4 yrs

4 yrs

5 yrs

5 yrs

5 yrs

Radiation

SBRT

IMRT+

SBRT boost

HDR-BT 

monotherapy

IMRT 

(dose escalated)

IMRT 

(dose escalated)

RP+SRT

Coverage 

area over 

prostate

SV

Whole pelvic 

±SV (if MRI+)

• SV

• 27% 

whole pelvic

• SV

• 19%

 whole pelvic

Whole pelvic

Adjuvant 

hormone 

therapy

ADT+Zytiga+Erleada

93% ADT

80% ADT

ADT

ADT

ADT

Duration of 

hormone 

therapy

6 months

2 yrs

6.3 months

4 months

28 months

4-6 months

Risk

VHR

78% HR

22% VHR

HR

HR

HR

Recurrent

bRFS

90%

92%

87%

76%

88%

89%


HR=high risk VHR=very high risk SV=seminal vesicles bRFS=biochemical recurrence-free survival: PSA stayed lower than nadir+2.0 ng/ml

2.5 years of follow-up is too early to draw valid conclusions. We see that most of the trials had higher bRFS even with much longer follow-up; however, only AASUR recruited very high-risk patients exclusively. ICECAP has shown that only metastasis-free survival is a valid surrogate endpoint for overall survival. A trial on high-risk patients will have to run for 8-10 years to collect a sufficient number of metastases to draw valid conclusions, so we can only look at this as an early signal.

Treatment of Pelvic Lymph Nodes

We know that the time to be able to see the first few cancerous pelvic lymph nodes is often several years, so 2.5 years of follow-up tells us little. The newly approved PSMA PET scans will be able to rule out the larger metastases (>5 mm), but will never be able to find metastases smaller than that. Waiting for visibility to make the decision to treat is a bad idea. By the time some lymph nodes are large enough or rapidly growing, the risk of spread outside the pelvic lymph node drainage area increases, and the hope of a cure may vanish.

The PSMA PET/CT is nevertheless worthwhile. While a negative scan does not change the treatment decision, a positive scan may detect occult metastases or pelvic lymph nodes that may benefit from a higher spot dose and more intense or longer hormone therapy.

We rely on validated formulas to tell us the probability that there are microscopic pelvic lymph node metastases. Two of the popular formulas are the Roach Equation (discussed here) and the Yale Formula (discussed here).

There is a risk of overtreatment. Many high-risk patients will never require pelvic lymph node treatment, and we are awaiting evidence (RTOG 0924) that such treatment will improve survival. As we have seen, bRFS is improved.

However, the only risk is that toxicity will be higher when the whole pelvis is treated. Murthy et al. showed that even at higher doses of pelvic lymph node radiation, there was no increase in acute toxicity, late gastrointestinal toxicity, and no deterioration in patient-reported quality of life scores.

Arguably, 25 extra IMRT treatments to the pelvic lymph nodes represent a patient inconvenience over the 5 SBRT prostate-only treatments. In the UCLA and Sunnybrook high-risk SBRT trials (discussed here), the pelvic lymph nodes may be treated (to 25 Gy) within the same 5 treatments. So far, with limited follow-up, cancer control is high and toxicity is low.

Hormone therapy intensification

The DART 01.05 GICOR trial proved that long-term (28 months vs 4 months) ADT improves survival in high-risk patients even when treated with dose-escalated IMRT. Nabid et al. proved that 18 months is often as good as 36 months. AASUR suggests that by including both Zytiga and Erleada, the duration of hormone therapy can be shortened. But the sexual and hormone quality of life did diminish. This raises questions that can only be answered in an expanded randomized clinical trial:

  • Are all 3 medications (Zytiga, Erleada, and Lupron) necessary for the benefit? The ACIS trial found that adding Erleada increased radiographic progression-free survival in mCRPC patients. There was no such synergy found in adding Xtandi to Zytiga in this non-randomized trial.
  • Do they add much to Lupron alone if whole pelvic radiation is given?
  • Does Lupron alone for, say, 9 months, with whole-pelvic SBRT (as in the UCLA trial) afford the same benefit with less toxicity? And would Orgovyx instead of Lupron allow for earlier testosterone recovery?
  • Can genomics (Prolaris or Decipher of biopsy tissue) identify patients who might benefit from the combined hormone therapy?



Sunday, May 23, 2021

Abiraterone+docetaxel+ADT for newly diagnosed metastatic men beats docetaxel+ADT (or abiraterone+ADT)

The first results of the long-awaited PEACE-1 randomized clinical trial (RCT) are in. They randomized newly diagnosed metastatic men to either prostate radiation or abiraterone or standard-of-care (SOC). SOC included docetaxel for many of the men.

Radiographic progression-free survival increased by 2.5 years (from 2.0 to 4.5 yrs) with the addition of abiraterone to docetaxel. Time to castration resistance increased by 1.7 yrs (from 1.5 to 3.2 yrs). 

The full results will tell us how much the prostate radiation adds, and the effect on overall survival. The analysis by metastatic burden will be important too. Meanwhile, docetaxel+abiraterone+ADT should be considered the new standard of care.

How does this combination therapy compare to previous RCTs for docetaxel or abiraterone?

Because the STAMPEDE RCTs for docetaxel and abiraterone occurred at about the same time, 566 patients were randomized to one or the other. Sydes et al. reported the outcomes after a median of 4 years of follow-up. 
  • Abiraterone reduced PSA more quickly, as reflected in "failure-free survival" (time to PSA increase, clinical progression, or death) and "progression-free survival" (time to first "failure" event, excluding PSA). 
  • Those who received docetaxel first soon caught up. There were no significant differences in "metastasis-free survival," "prostate cancer-specific survival," "overall survival," or "time to the first skeletal-related event (pain or fracture)"
  • Serious toxicity (Grade 3 or greater) was also equal: 50% for docetaxel, 48% for abiraterone.

The STAMPEDE researchers (the STOPCAP group) did a meta-analysis of the STAMPEDE trials that concluded that abiraterone probably had a greater effect than docetaxel, but unlike the analysis above, it was not a direct comparison. They concluded that either should be recommended.

The other RCTs for metastatic hormone-sensitive prostate cancer (mHSPC) included STAMPEDE- abiraterone, LATITUDE- abiraterone, STAMPEDE-docetaxel, CHAARTED-docetaxel.GETUG-AFU-15(docetaxel) did not detect a difference in survival from the early use of docetaxel. 30% had prior treatment. There were differences in the populations studied in each trial that should be understood.

LATITUDE screened for more advanced patients - 80% were "high risk." High risk was defined by having 2 of 3 "high-risk" features, either: Gleason 8-10, or ≥ 3 bone metastases or visceral metastases. About half had performance status of 1 or 2 ("0" is the best performance status).

CHAARTED started by recruiting only patients with a high burden of metastases. But only 73% were de novo, meaning 27% had been previously treated before they entered the trial. They later opened the trial to men with fewer metastases and ended up with a small group (27%) of low burden de novo patients. They defined "high burden" as visceral metastases or ≥ 4 metastases with at least 1 outside the axial skeleton.

The two STAMPEDE trials recruited almost entirely (95%) de novo patients. 56% were "high burden" by the CHAARTED definition. 52% were "high risk" by the LATITUDE definition. 26% had performance status of 1 or 2.

PEACE1 recruited only de novo metastatic patients, with excellent performance status. 57% had high-risk features by the LATITUDE definition.

The following chart shows how long it took for patients to progress on each of the early interventions. Complicating analysis, each trial used a slightly different definition of progression.

Time to "progression" following each early therapy


abiraterone+docetaxel+ADT

docetaxel+ADT

abiraterone+ADT

ADT alone

Trial notes

PEACE1*

4.5 yrs

2.0 yrs



100% de novo, 100% perf. status 0, 57% high volume

STAMPEDE

(abiraterone)



Not reached (> 3.4 yrs)

2.0 yrs

94% de novo,26% perf.status 1 or 2, 55% high volume

LATITUDE*

(abiraterone)



2.8 yrs

1.2 yrs

100% de novo, 45% perf. Status 1 or 2, 80% high volume/high risk

STAMPEDE

(docetaxel)


3.1 yrs


1.7 yrs

95% de novo, 56% high volume

CHAARTED§

(docetaxel)


2.8 yrs


1.7 yrs

73% de novo, 65% high volume

* time to radiographic progression or death
time to first symptomatic event or death
§ time to symptoms or radiographic progression

While comparison is complicated, the extension of progression-free survival by 2.5 years by adding abiraterone to docetaxel alone is impressive. Docetaxel adds 1 - 1.5 years to progression-free survival over ADT alone. Abiraterone adds 1 - 1.5 years to progression-free survival over ADT alone.

Does docetaxel only benefit mHSPC patients with a high-volume of metastases?

This has stirred much controversy. Gravis et al. argue that the overall survival improvement from docetaxel was seen in CHAARTED only among men with high-volume metastases was a real biological effect (i.e., that high-volume PC is a different disease from low-volume PC, that responds differently to chemo). Armstrong argues for a biological difference. They acknowledge, however, that the small sample size of de novo men with low volume metastases (n=154) and their short follow-up (only 16% had died during the 48 months of follow-up) may be underestimating the benefit in the low volume, de novo subgroup. Remember that in CHAARTED, the low-volume subgroup was not recruited initially, so the follow-up is shorter in the group that needs the longer follow-up.

Clarke et al. argue that STAMPEDE is the more definitive trial because its sample size of mHSPC men with low-volume metastases was over twice as great (n=362) and the follow-up was longer (62% of the docetaxel patients had died during 78 months of follow-up). They did not find evidence of heterogeneity - low-volume PC responded just as much to chemo as high-volume PC. While the effect on low volume PC was similar, the statistical confidence in its effect did not meet 95% confidence. They attribute this to insufficient sample size (power). Suzman and Antonarakis agree that chemo should be offered to all mHSPC men, regardless of volume of metastases. It would seem that a meta-analysis combining the low-volume, de novo subgroups from both CHAARTED and STAMPEDE might be sufficiently powered to provide a more definitive answer. Patients wishing to understand why analyses of subgroups are controversial, may be amused by this analysis of STAMPEDE subgroups. The authors found that patients born on a Monday benefited the most from abiraterone, and it was statistically significant. while patients born on a Friday had the least benefit, and it wasn't statistically significant. They further found that men diagnosed on a Monday did not benefit from abiraterone, whereas men diagnosed on other days had a statistically significant benefit. These absurd findings are sometimes known as "p-hacking" or "data dredging." This interview discusses this error and the mistake of drawing biological inferences from statistical significance. Pre-specifying subgroups is one way to avoid such errors, but drawing conclusions from inadequately powered subgroups, while tempting, should be avoided. This controversy is reflected in the conflicting recommendations that constitute the standard of care.

The current NCCN guidelines state: "Docetaxel should not be offered to men with low volume metastatic prostate cancer, since this subgroup was not shown to have improved survival in either the ECOG study or a similar European (GETUG-AFU 15) trial." The current ASCO guidelines state: "Recommendation 1.2. For patients with low-volume metastatic disease (LVD) as defined per CHAARTED who are candidates for chemotherapy, docetaxel plus ADT should not be offered (Type: evidence-based, benefits outweigh harms; Evidence quality: high; Strength of recommendation: strong for patients with LVD)." On the other hand, the current AUA/ASTRO/SUO guidelines state: "15. In patients with mHSPC, clinicians should offer continued ADT in combination with either androgen pathway directed therapy (abiraterone acetate plus prednisone, apalutamide, enzalutamide) or chemotherapy (docetaxel). (Strong Recommendation; Evidence Level: Grade A) Canadian Urological Assn (CUA) guidelines state: "Docetaxel plus ADT may also be an option in patients with mCNPC/mCSPC with good performance status with low-volume disease (Level 2, Weak recommendation)." NICE (UK) guidelines state: "Offer docetaxel chemotherapy to people with newly-diagnosed metastatic prostate cancer who do not have significant comorbidities." European Urological Assn (EAU) guidelines state: "Based on these data, upfront docetaxel combined with ADT should be considered as a standard in men presenting with metastases at first presentation provided they are fit enough to receive the drug [1070]"

I personally believe that the STAMPEDE researchers make a stronger case pending better data from PEACE1.

It is also possible that genomics will allow better selection of patients for early chemotherapy. Hamid et al. examined tissue collected for the CHAARTED trial. They found a subtype called "Luminal B" that was associated with improved survival from chemotherapy. This finding has not yet been validated on an independent trial. Meanwhile, DECIPHER provides the test as part of its GRID analysis.

The major advantages of early chemo vs "saving it for later" are:
  • Longer survival advantage
  • Side effects are milder when patients are less debilitated from years of cancer
  • As many as 10 infusions (usually 6) can be given if it is well tolerated
  • Most patients are not resistant, so docetaxel can be repeated
  • If there is resistance, cabazitaxel can be given


Tuesday, May 18, 2021

New Guidelines for Salvage Radiation Dimensions

It has always been troubling that only about half of all salvage radiation treatments after prostatectomy failure are successful. Usually, only the prostate bed is treated. But sometimes recurrent patients (or those with persistently elevated PSA) receive salvage radiation to the pelvic lymph nodes as well, or subsequently. Radiation oncologists usually follow RTOG (now called NRG Oncology) guidelines on what constitutes the dimensions of the prostate bed and the pelvic lymph nodes.

Prostate Bed Coverage

Often, the cancer has only penetrated into the bed or fossa. This is especially suspected if there are significant positive surgical margins. The 2010 RTOG consensus guidelines were updated in 2020 by the Francophone Group of Urological Radiotherapy (GFRU) based on standard imaging (MRI and CT). Harmon et al. reported on 45 patients within the LOCATE trial who received a positive Axumin PET/CT upon recurrence or persistent PSA after prostatectomy.

  • 30 patients had cancer in the prostate fossa
  • The 2010 RTOG guidelines completely or partially missed cancer in 33% of the patients
  • The 2020 GFRU guidelines completely or partially missed cancer in 10% of the patients
The new GFRU guidelines are clearly superior in terms of oncological outcomes, but toxicity must be considered as well.

Pelvic Lymph Node Coverage

In 2020, NRG Oncology revised its previous 2009 RTOG pelvic lymph node coverage consensus guidelines based on MRI and PET scans. They recommended coverage as high as the aortic bifurcation or common iliac lymph nodes (whichever is higher, depending on patient anatomy), which is about the level of the L4-L5 vertebrae. The expanded coverage area extends down to the pre-sacral nodes at the bottom of vertebra S3. Harmon et al. also validated the expanded NRG Oncology guidelines based on Axumin PET/CT scans. They found:

  • There were 43 sites of cancer in the pelvic lymph nodes
  • The 2009 RTOG guidelines completely or partially missed 32% of the nodal cancers
  • The 2020 NRG Oncology guidelines completely or partially missed none of the nodal cancers

The SPPORT trial found that treating pelvic lymph nodes prophylactically improved outcomes, but wasn't necessary in patients with low PSA. This study did not examine the toxicity of the expanded coverage. The wider margins of the prostate bed will probably increase genitourinary toxicity. Careful contouring of the pelvic lymph node area to exclude bowel, bone, bladder, and muscle seems to prevent excess toxicity at the doses usually used (45-50.4 Gy). In one recent study of high-risk patients, a pelvic lymph node dose as high as 56 Gy was used without extra toxicity. Boosted site doses can also be utilized where PET/CT  or MRI has identified specific tumors. However, treatment should not be delayed until such tumors become apparent on imaging.


Friday, April 30, 2021

First clinical trial of Lu-177-PSMA-617 in recurrent, hormone-sensitive men

While we expect only a few months of extra survival from the VISION trial of Lu-177-PSMA-617 in heavily pretreated, metastatic, castration-resistant men (see this link), we hope to get more out of the radiopharmaceutical if used earlier. Privé et al. reported the results of a pilot trial in 10 recurrent men treated with Lu-177-PSMA-617 at Radboud University in Nijmegen, The Netherlands. They were all:

  • Recurrent after prostatectomy ± salvage radiation (PSA>0.2 ng/ml) 
  • Rapid PSA doubling time (< 6 months)
  • Between 1-10 metastases detectable on a PSMA PET scan or USPIO MRI
  • At least 1 metastasis > 1 cm.
  • Unable to receive SBRT to metastases 
  • No visceral metastases 
  • Have not begun salvage ADT
  • Treated with a low dose (3 GBq) on day 1; second treatment (~6 GBq) after 8 weeks (compared to dose in VISION trial of 7.4 GBq in each of 4-6 cycles)

After 24 weeks of follow-up after Cycle 2:

  • 5 patients had PSA reduced by >50% (1 undetectable)
  • 2 patients had stable PSA
  • 3 patients had PSA progression
  • 6 patients had a radiographic response
  • 4 patients had radiographic progression
  • ADT-deferred survival was 9.5 months (median)
  • Those with lymph node only metastases had the best response
  • Those with any bone metastases had lesser response
After 2nd dose, comparing their 24-week PSA to their 12-week PSA:

  • PSA was continuing to decline in 3 patients
  • PSA was rising again in 6 patients

Side effects were mild (no grade 3) and transient:

  • fatigue in 7; nausea in 3
  • dry mouth (xerostomia) in 2

There are lots more questions than answers:
  • Would a higher dose and more treatments be more effective?
  • Would a higher dose and more treatments be more toxic?
  • Is it like Xofigo in that it's more effective with micrometatases? If so, would a combination with SBRT targeted at the larger metastases be more effective?
  • Since it was more effective on lymph nodes, would it make a good combination with Xofigo for patients who have both lymph node and bone metastases? (See also Th-227-PSMA)
  • Because there seems to be a continued abscopal effect for some patients, would combining it with Provenge be optimal?
  • Would pretreatment with ADT or a new anti-androgen (Xtandi, Erleada or Nubeqa) increase expression of PSMA, and increase radiosensitivity?
  • Can we predict who will benefit?
  • Use in other patient populations remains to be explored: high-risk, newly diagnosed metastatic, castration-resistant but chemo-naive. Optimal sequencing with other therapies remains to be explored.






Wednesday, March 17, 2021

Whole gland TULSA-PRO and HIFU outcomes: Is it time to give up on thermal ablation for prostate cancer?

 We have seen that there are many unanswered questions about focal thermal ablation (see this link), among them are:

  1. Is Index Tumor Theory valid?
  2. Can foci of cancer be precisely targeted using current imaging methods?
  3. Does thermal ablation completely ablate the cancer in the ablation zone?
  4. Will the Heat Sink Effect and biochemical protective mechanisms (e.g., heat shock proteins) always cause sub-lethal killing?
  5. Is toxicity and damage to organs at risk any better than radical (whole gland) radiation?
  6. How do the high "re-do" rates affect toxicity and costs?
  7. How do we track success?
  8. What are the best salvage therapies?
  9. Can it extend the time on active surveillance?
  10. What are the intra-operative risks?
  11. What is the learning curve like for therapists?
  12. Is it worth the cost?
Laurence Klotz et al. conducted a clinical trial of a new kind of high-intensity focused ultrasound (HIFU). He studied whole-gland ablation because current FDA rules only permit ablation for removal of prostate tissue (like a TURP), but not for treatment of prostate cancer. In fact, the FDA specifically rejected HIFU for the treatment of prostate cancer. 

TULSA-PRO utilizes a thermal feedback loop to assure that tissue temperature reaches the desired heating. It is done "in-bore" in an MRI by a team consisting of a urologist and an interventional radiologist, and an anesthesiologist (full anesthesia was required). It was hoped that the MRI precision and assured tissue heating (to 55°C) would afford higher cancer-killing with less toxicity.

115 patients were carefully selected:
  • 15% were low volume GS 3+3 (cancer in ≤2 cores, <50% in any core)
  • 23% were high-volume GS 3+3
  • 60% were GS 3+4
  • 3% were GS> 3+4
  • 94% were T1c or T2a
  • Median PSA=6.3
  • 67% were intermediate risk (predominantly favorable)
  • 33% were low-risk
  • Median prostate volume was 40 cc.
The operative procedure involved:
  • prophylactic antibiotics
  • general anesthesia
  • cystoscopy
  • transurethral US heating wand
  • pelvic tissue at apex avoided to avoid incontinence
  • endorectal cooling device
  • 243 minutes (4 hours), start to finish
  • suprapubic catheter (17 days)

Safety Outcomes/ Adverse Events:

Physician-reported outcomes:
  • Acute (immediate) Grade 2:
    • erectile dysfunction (29%)
    • UTI (25%)
    • bladder spasm (10%)
    • painful urination (10%)
    • urinary retension (8%)
    • pain (7%)
    • incontinence (6%)
    • epidydimitis (5%)
  • Acute (immediate) Grade 3 (severe, requiring intervention):
    • infection (4%)
    • urethral stricture (2%)
    • urinary retention (1.7%)
    • urethral calculus and pain (1%)
    • urinoma (1%)
  • long-lasting Grade 2 adverse events:
    • erectile dysfunction (23%)
    • incontinence (3%)
    • recurrent infections (2%)
Patient-reported outcomes at 12 months vs baseline on EPIC questionnaire (% reporting moderate decline/ % reporting moderate gain):
  • Sexual domain: 32%/ 1%
  • ED on IIEF-15 questionnaire: 35%/6%
  • 75% of previously potent men returned to erections sufficient for penetration with only ED meds.
  • Urinary incontinence:14%/7%
  • Urinary irritation/obstruction: 8%/5%
  • Bowel domain: 5%/2%

Oncologic Outcomes (at 12 months):

  • 35% had residual cancer at biopsy
  • 24% among low volume GS 6
  • 38% among high volume GS 6
  • 37% among GS 3+4
  • Median PSA reduced to 0.5 ng/ml
  • Median prostate volume reduced to 2.8 cc
  • PIRADS ≥3: 30%

There is little 12-month data available for other therapies, but recurrence rates almost always increase with time. There was a 2-year study of SBRT at Georgetown that may be roughly comparable:



TULSA-PRO (1 year)

115 patients

SBRT (2 years)

100 patients

Risk category

Low-risk

Intermediate-risk

High-risk


33%

67%


37%

55%

 8%

Biochemical recurrence-free survival

100%

99% (1 local recurrence in a high-risk patient)

Biopsy-proven local recurrence

35%

1% estimated in the high-risk patient

Nadir PSA

0.5 ng/ml

0.5 ng/ml

Acute urinary toxicity (grade 3)

8%

0%

Acute rectal toxicity (grade 3)

0%

0%

Late-term urinary toxicity (grade 2+)

5%

18% 

(1% Grade 3)

Late-term rectal toxicity (grade 2+)

0%

0%

Potency preservation among previously potent men

75%

79%


Full-gland TULSA-PRO seems to treat PSA without eradicating the cancer (see this link). In about a third of favorable-risk patients, the cancer remained viable in spite of the thermal ablation. We see that compared to whole-gland SBRT, it is less curative, Severe (requiring intervention) acute urinary toxicity is higher with TULSA-PRO, although late-term Grade 2 urinary toxicity is lower (not severe for either therapy). Rectal toxicity is not an issue for either therapy. Potency preservation is good and about equal for both.


15-year study suggests long-term inferiority

Bründl et al. reported 15-year oncological outcomes of 674 patients treated with whole-gland HIFU at one university hospital in Regensberg, Germany. Notably, overall survival and prostate cancer-specific survival were high in all localized risk categories. However, comparing 15-year prostate cancer-specific survival to similar risk men who have undergone prostatectomy at Memorial Sloan Kettering, we see the survival is relatively poor:

15-yr Prostate Cancer-Specific Survival

Risk Group

HIFU

RP*

Low Risk

95%

99%

Intermediate Risk

89%

98%

High Risk

65%

88%

* from the MSK pre-prostatectomy nomogram for a 62 yo man. For low-risk, he had PSA=5, GS 3+3, stage T1c, and 25% positive cores; For intermediate-risk, he had PSA=15, GS 4+3, stage T2c, and 50% positive cores; for high risk, he had PSA=25, GS 4+5, stage T3a and 100% positive cores.

The longest follow-up study there is for SBRT is 12 years. For SBRT, Alan Katz reported rates of "local control" on SBRT - the percent of patients who had recurrences only in the prostate. These could all theoretically be cured with a re-do of SBRT, focal brachytherapy or focal ablation. We can look at long-term local control from SBRT next to the long-term reported rates of salvage therapy after whole-gland HIFU (either re-do of HIFU or other salvage). HIFU does not compare well:

% patients who do not require salvage treatment

Risk Group

HIFU

SBRT

Low Risk

77%

97%

Intermediate Risk

52%

92%

High Risk

28%

88%

It is hard to see why anyone would choose HIFU or TULSA-PRO over SBRT. While focal ablation may incur less toxicity, the local recurrence rate will be much higher. These trials suggest that  HIFU and TULSA-PRO are inferior, although only a direct randomized comparison could prove that definitively.


For an article discussing the use of focal ablation as an active surveillance "extender," see:

What should focal therapy be compared to and how does it compare?

For an article discussing salvage focal ablation after the failure of radiation therapy, see:

Focal salvage ablation for radio-recurrent prostate cancer