Monday, January 7, 2019

SBRT: Optimal Dose

While excellent outcomes of stereotactic body radiation therapy (SBRT) have been reported since it was first used for prostate cancer in 2003, the delivered doses have ranged from 35 Gy in 5 treatments to 40 Gy in 5 treatments. We saw in a University of Texas Southwest (UTSW) study (see this link) that toxicity escalates when doses are greater than 45 Gy.

Memorial Sloan Kettering designed a clinical trial (described here) among low and intermediate-risk men. They started with about 35 men treated at 32.5 Gy and checked for dose-limiting toxicity. When most reached 6 months of follow-up, and fewer than 10% had dose-limiting toxicity, they increased the dose to the next group of 35 men by 2.5 Gy in 5 treatments. In all, they had 136 patients who were followed up for 5.9 yrs, 5.4 yrs, 4.1 yrs and 3.5 yrs with doses of 32.5 Gy, 35 Gy, and 37.5 Gy and 40 Gy, respectively.

Their toxicity and oncological outcomes are reported here and shown in the table below:



Dose delivered in 5 treatments

32.5 Gy
35.0 Gy
37.5 Gy
40.0 Gy
Acute toxicity




Urinary – grade 2
16.7%
22.9%
8.3%
17.1%
Rectal – grade 2
0%
2.9%
2.8%
11.4%
Late-term toxicity




Urinary – grade 2
23.3%
25.7%
27.8%
31.4% (1 grade 3 stricture)
Rectal – grade 2
0%
0%
0%
0%
Oncological outcomes




5-year PSA failure
15%
6%
0%
0%
2-year positive biopsy
47.6%
19.2%
16.7%
7.7%

Other than the one urinary stricture, there were no acute or late-term grade 3 (serious) toxicities.

Because follow-up decreased with increasing dose, it is unclear whether the zero biochemical failure rates for doses of 37.5 Gy and 40 Gy will be sustained, but in other studies, almost all SBRT failures had occurred within 5 years. The positive biopsy rates will probably continue to decline with longer follow-up because the non-viable cancer cells can take up to 5 years to clear out. Clearly, 32.5 Gy is too low because of its unacceptable oncological results.

A dose of 40 Gy in 5 treatments has very acceptable toxicity and excellent cancer control. It would be reasonable to use doses as low as 37.5 Gy in patients with insignificant amounts of low grade cancer (who would usually be excellent candidates for active surveillance). Based on the UTSW study, it would be reasonable to escalate the dose as high as 45 Gy in patients judged to have radioresistant cancers.