Showing posts with label I-131-MIP-1095. Show all posts
Showing posts with label I-131-MIP-1095. Show all posts

Tuesday, August 11, 2020

PSMA-targeted radiopharmaceutical clinical trials in the US

Now that the VISION trial of Lu-177-PSMA-617 is no longer recruiting, some patients are wondering if they can still get PSMA-targeted radiopharmaceuticals in the US, without traveling to Germany, Australia, India, etc. Here is a list of trials that are active, still open to recruitment, or will soon be recruiting. 

Unless otherwise noted, they are all for men who are: 

  • metastatic
  • castration-resistant 
  • have had at least one taxane chemotherapy
  • at least one of the advanced androgen receptor therapies (e.g., Zytiga, Xtandi, Erleada, or Nubeqa)
  • no Xofigo
  • PSMA-avid on a PSMA PET/CT scan

Links that have contact information are provided.

Radiopharmaceutical

Adjuvant drugs

Extra criteria

Recruitment status/ contact

Locations

Lu-177-PSMA-617

Keytruda

No chemo since castration resistant

recruiting

UCSF

Lu-177-CTT1403

 

No Jevtana

recruiting

UCSF

Lu-177-PSMA-617

 

 

recruiting

•Weill Cornell

•Tulane (not yet)

Th-227-Antibody

(see article)

 

 

recruiting

• Royal Marsden (UK)

• Finland

• Tulane (not yet)

• MSK (not yet)

Lu-177-J591

Ketoconazole

Prior RP or RT

Castration-resistant

Non-metastatic

recruiting

• Weill Cornell

• USC

• Georgetown

• IU

• U of Iowa

• UPMC

Lu-177-PSMA-R2

 

 

recruiting

• Stanford

• Yale

• Tulane

• Johns Hopkins

• Mt Sinai

• MD Anderson

• U of Wisconsin

Ac-225-J591

 

 

recruiting

• Weill Cornell

• Tulane (not yet)

Ac-225-J591

 

 

Not yet recruiting

• Weill Cornell

• Brooklyn Methodist

Lu-177-PSMA-617

(VISION)

 

 

Active, not recruiting

• 84 locations

Results expected August 2020

I-131-1095-MIPS

(see article)

Xtandi

Chemo naïve

Failed Zytiga

Active, not recruiting

• 17 locations

Results expected December 2021

 



Thursday, October 11, 2018

I-131-MIP-1095 has entered a phase 2 randomized clinical trial

As I reported last year, a new radiopharmaceutical has entered the pack. I-131-MIP-1095, a powerful beta-particle emitter attached to a PSMA-targeted ligand, will enter a multicenter phase 2 randomized clinical trial. Progenics®, the manufacturer, put out a press release, which can be read here. (Update 4/2020) The clinical trial has begun recruiting in 17 locations in the US and Canada.

They will be testing a combination of I-131-MIP-1095 with enzalutamide (Xtandi) in patients who are metastatic, castration resistant, have not yet had chemotherapy, and who have become resistant to Zytiga. It is hoped that Xtandi will radiosensitize the cancer to the radiopharmaceutical with a resultant PSA decrease.

175 evaluable patients will be recruited; half will get the radiopharmaceutical + Xtandi, half will get Xtandi alone. All patients will be screened using DCFPyL PET/CT to assure that their metastases are PSMA-avid. The primary endpoint - the percent who have greater than 50% PSA reduction - will be collected for a year. Secondary endpoints - radiographic response, progression-free survival, and overall survival - will be reported at the end of two years.

Another radiopharmaceutical in clinical trials is Lu-177-PSMA-617 .  There are various phase 1 and 2 clinical trials in the US and internationally (see list at the end of this link).

I recently reported about the very promising outcomes of Ac-225-PSMA-617 in Germany. Patients report that they are combining Ac-225-PSMA-617 and Lu-177-PSMA-617 to get the advantages of each. Weill Cornell in NYC is investigating Ac-225-J591 in a phase 1 trial.

For information on the trial of Th-227-PSMA, see this link.

Friday, January 27, 2017

I-131-MIP-1095, a new radiopharmaceutical, in clinical trials at Memorial Sloan Kettering

There are few radiopharmaceuticals in clinical trials in the US (there are several in use in Germany), so when a new one is announced, we take notice. I-131-MIP-1095 has had a very limited clinical trial in Germany in 28 patients, and will now be tried in the US.

Like Lutetium 177, Iodine 131 is a beta particle emitter (see this link). It's beta particle energy is somewhat higher, so that it can penetrate greater distances through tissue - up to 3.6 mm, compared to 1.9 mm for Lu-177. This is an advantage in that it can destroy larger tumors, but it is a disadvantage in that it may destroy more healthy tissue, causing hematological and renal side effects. It is also similar to Lu-177 in that its uptake in human tissues can be detected using a gamma ray camera or SPECT detector. Because gamma ray detection does not afford the image quality that PET/CT does, it may be combined with a positron emitter, I-124. Lu-177 is sometimes combined with Ga-68 for the same purpose. This combination of therapeutic and diagnostic (sometimes called theranostic) may be useful in tailoring the dose to the patient based on individual uptake characteristics.

The molecule (or ligand) that the I-131 is attached to is MIP-1095. MIP-1095 is attracted to the PSMA protein on the surface of 95% of prostate cancer cells. Although it is highly specific for prostate cancer, there are other tissues that express PSMA, especially the salivary glands and lacrimal glands. It is excreted by the liver and kidneys, and may show up in the intestines, and the lower urinary tract. The dose to the kidneys may limit the amount of the pharmaceutical that may be given to the patient.

A group from the University Hospital Heidelberg, Zechman et al., treated 28 metastatic castration-resistant patients with I-131-MIP-1095 with the following results:

  • In 61%, PSA was reduced by >50%. This is better than the response seen with Lu-177-PSMA-617 in these trials and in this one.
  • PSA decreased in 21 of 25 patients, increased in 4.
  • 85% had complete or moderate reduction of bone pain. 
  • 25% had a transient slight to moderate dry mouth, which resolved in 3-4 weeks.
  • White blood cell count, red blood cell count and platelets declined during treatment, but there were only 3 cases of grade 3 hematologic toxicity, often in patients with low blood counts at baseline.
  • No renal toxicity was observed.
  • The effective dose to cancer cells was higher than for Lu-177-PSMA-617, red marrow and kidney doses were similar, and liver dose was lower.

The clinical trial that is now recruiting at Memorial Sloan Kettering, is a Phase 1 trial to find the best dose of I-131-MIP-1095 among patients with metastatic castration-resistant prostate cancer. Doses will be administered 12 weeks apart for up to 5 cycles or until dose-limiting toxicity is observed (monthly assessments). Interested patients in the New York City metropolitan area should call the contacts listed on the bottom of this trial description.