Showing posts with label clinical trial. Show all posts
Showing posts with label clinical trial. Show all posts

Wednesday, May 3, 2017

Unwarranted conclusions about oligometastatic treatment

Some patients wonder, if they just have a couple of metastases, why can't those be "zapped" by a few quick SBRT treatments and thereby be cured of their prostate cancer? Or, even if they can't be cured, can't the cancer's progression be slowed down?

To address those questions, we have to understand what is called the "natural history" of prostate cancer progression. Even high-risk prostate cancer is quite a different sort of thing from metastatic prostate cancer. High-risk prostate cancer cells, for example those with Gleason score 5+5, are incapable of thriving outside the prostatic environment. At some point they undergo a genetic transition called epithelial-to-mesenchymal transition (EMT), after which they can freely move throughout the body in the lymph, blood or the spaces around nerves, and plant themselves and accumulate in distant locations. Sometimes those microscopic metastases can circulate for a long time before planting themselves somewhere new. Sometimes they can plant themselves but do not proliferate appreciably for a long time. Sometimes they can alter the tissue environment in a new place (especially bone tissue) so it is more amenable to clumping and proliferation. Sometimes those cells get caught in lymph nodes (lymph nodes may be thought of as filters to catch cellular debris, including cancer cells) and proliferate there. All of these processes occur simultaneously.

Let's try to gain an understanding of how many cancer cells are in systemic circulation at a given time. We have found that a count of 5 or more circulating tumor cells (CTC) per 7.5 ml of blood is associated with metastatic progression (the prostate is also always shedding cells, healthy and cancerous, that are not capable of metastatic progression). So a 200 lb. man with no detectable metastases and with a CTC count of 5, who has 6.5 liters of blood, will have at least 4,300 circulating tumor cells. In addition, there will be many thousands more lodged in and between tissues. Now, to be detectably metastatic with today's best imaging technology, a clump of tumor cells must be at least 4 mm long. The cancer cell may be about 10 μm, so there are at least 200,000,000 of them before the smallest metastasis becomes detectable. All of those cancer cells are constantly shedding and forming new daughter metastases elsewhere. So cancer cells may be circulating, clumping, and growing for a long time before they form a big enough clump to be detectable.

It should be clear that there is no possibility of a cure without systemic treatment. Currently, we have no systemic treatments that can cure metastatic prostate cancer.

How long does it take to go from the first microscopic metastasis to the point where it is detectably metastatic? That's impossible to know with any accuracy for a given individual. What we do know is that on average it takes 8 years from the time a man is biochemically recurrent after prostatectomy to the time when the first bone metastases are detected on a bone scan (see this link). That represents the accumulation of perhaps a billion cells in one place. It may be years more before the next bone metastasis is detected. Lymph node metastases are the slowest progressing of all the kinds that prostate cancer causes. It is not unusual for many years to pass between new detectable lymph node metastases. The new PET scans detect metastases much earlier, when the tumors are 80% smaller.

Now we can come back to the question of whether early detection and treatment of metastases can at least slow progression and increase survival. A C-11 Choline PET/CT may be able to reliably detect metastases when the PSA is only about 2 ng/ml, rather than 20 ng/ml for a bone scan. The newer PSMA-based PET/CTs may detect metastases even earlier, say at about 0.5 ng/ml. So, if any treatment is given when metastases are detected this early, and then we find that it takes a very long time - many years - to detect subsequent metastases, did the treatment delay progression? This effect is called "lead-time bias."

Adding to the confusion is the fact that those big clumps of detectable cancer cells are the source of much of the PSA. When those detected metastases are "zapped," the cancer cells in them no longer secrete PSA and the cancer is controlled locally. We also know that old clumps of cancer are a rich source for new tumor cells. Is it possible that reducing at least that local source of metastatic cells will slow progression?

The only way to answer this question with any assurance is to conduct a randomized clinical trial. Some patients will get the treatment, in this case SBRT to the detected metastases, and the other patients will get standard of care -- hormone therapy. Then we will be able to see how long it takes for new distant metastases to be detected for the treated group as compared to the control group; and more importantly, did the treated group survive longer?

Triggiani et al. retrospectively report on patients at several centers in Italy (for some reason, most of these studies have been done in Italy) who had 3 or fewer detected metastases treated with SBRT.

  • About 100 patients with a recurrence after primary treatment with metastases detected by Choline PET scan (the oligo-recurrent group)
  • 41 castration-resistant patients with metastases detected by bone scan/CT (the oligo-CRPC group)

After a median of 20-23 months of follow-up, distant progression-free survival was:

  • 43% after 2 years for the oligo-recurrent group
  • 22% after 2 years for the oligo-CRPC group

The authors conclude:
"Stereotactic body radiotherapy seems to be a useful treatment both for oligo-recurrent and oligo-CRPC."

We are now ready to understand why this is an unwarranted conclusion. There is no way to know, based on the data they provided, whether the treatment was "useful" or not. We have no way of knowing what the distant progression-free survival would have been had they not received the SBRT treatment. Inexplicably, several groups from Italy also reached such unwarranted conclusions.

In fact, in a meta-analysis with longer-running follow-up data, Ost et al. (commented on here) found that for oligo-recurrent patients, distant progression-free survival was:

  • 31% after 3 years, and only
  • 15% after 5 years

In other words, the vast majority (85%) of men with SBRT-treated oligometastatic recurrence had detectably relapsed within 5 years. Given the lead-time bias and the slow rate of detectable early progression anyway, it is impossible to say that the radiation treatment accomplished anything. Until we have some proof, patients should approach metastatic treatment for anything but palliative purposes with caution. There is currently no evidence, none, that treatment of metastases has any effect on survival.

In spite of the lack of evidence, if a radiation oncologist looking at the patient's anatomy finds metastatic radiation to be safe, then there is little reason other than cost to abstain from it. However, a patient is taking a survival risk if he puts off hormone therapy in order to find metastases, especially in light of early evidence from the TOAD study.

Treatment of pelvic lymph nodes is a special case. If a patient is able to detect any metastatic pelvic lymph nodes, and he is convinced that he should have treatment at all, he should consider treatment of the entire pelvic lymph node field rather than isolated pelvic lymph nodes. One has to treat what one can't see as well as what one can see; again, provided that it is safe to do so. Safety may be questionable because of anatomy, lack of visceral fat, history of bowel inflammation, and previous pelvic radiation. The evidence for efficacy is mixed. Some retrospective data analyses (Rusthoven, Abdollah, Jegadeesh) found a survival benefit, while some did not (Kaplan and Johnstone). These retrospective studies are notoriously confounded by selection bias (i.e., the patients who got the therapy were the most likely to improve anyway). We await the outcomes of the randomized clinical trials before we have a more definitive answer.

There are currently several randomized clinical trials that have begun. Few are large enough or scheduled to run long enough to detect a survival benefit for prostate cancer. So far, the trials are in London, Montreal, France, Ghent, Italy and at Johns Hopkins.




Friday, January 27, 2017

I-131-MIP-1095, a new radiopharmaceutical, in clinical trials at Memorial Sloan Kettering

There are few radiopharmaceuticals in clinical trials in the US (there are several in use in Germany), so when a new one is announced, we take notice. I-131-MIP-1095 has had a very limited clinical trial in Germany in 28 patients, and will now be tried in the US.

Like Lutetium 177, Iodine 131 is a beta particle emitter (see this link). It's beta particle energy is somewhat higher, so that it can penetrate greater distances through tissue - up to 3.6 mm, compared to 1.9 mm for Lu-177. This is an advantage in that it can destroy larger tumors, but it is a disadvantage in that it may destroy more healthy tissue, causing hematological and renal side effects. It is also similar to Lu-177 in that its uptake in human tissues can be detected using a gamma ray camera or SPECT detector. Because gamma ray detection does not afford the image quality that PET/CT does, it may be combined with a positron emitter, I-124. Lu-177 is sometimes combined with Ga-68 for the same purpose. This combination of therapeutic and diagnostic (sometimes called theranostic) may be useful in tailoring the dose to the patient based on individual uptake characteristics.

The molecule (or ligand) that the I-131 is attached to is MIP-1095. MIP-1095 is attracted to the PSMA protein on the surface of 95% of prostate cancer cells. Although it is highly specific for prostate cancer, there are other tissues that express PSMA, especially the salivary glands and lacrimal glands. It is excreted by the liver and kidneys, and may show up in the intestines, and the lower urinary tract. The dose to the kidneys may limit the amount of the pharmaceutical that may be given to the patient.

A group from the University Hospital Heidelberg, Zechman et al., treated 28 metastatic castration-resistant patients with I-131-MIP-1095 with the following results:

  • In 61%, PSA was reduced by >50%. This is better than the response seen with Lu-177-PSMA-617 in these trials and in this one.
  • PSA decreased in 21 of 25 patients, increased in 4.
  • 85% had complete or moderate reduction of bone pain. 
  • 25% had a transient slight to moderate dry mouth, which resolved in 3-4 weeks.
  • White blood cell count, red blood cell count and platelets declined during treatment, but there were only 3 cases of grade 3 hematologic toxicity, often in patients with low blood counts at baseline.
  • No renal toxicity was observed.
  • The effective dose to cancer cells was higher than for Lu-177-PSMA-617, red marrow and kidney doses were similar, and liver dose was lower.

The clinical trial that is now recruiting at Memorial Sloan Kettering, is a Phase 1 trial to find the best dose of I-131-MIP-1095 among patients with metastatic castration-resistant prostate cancer. Doses will be administered 12 weeks apart for up to 5 cycles or until dose-limiting toxicity is observed (monthly assessments). Interested patients in the New York City metropolitan area should call the contacts listed on the bottom of this trial description.

Sunday, December 18, 2016

Small Cell Prostate Cancer Clinical Trials

(frequently updated)

Small Cell Prostate Cancer (SCPC), and more generally Neuroendocrine Prostate Cancer (NEPC), are thankfully rare types of prostate cancers. They are not responsive to hormone therapy, to taxanes (Taxotere or Jevtana), or to radiation. They are difficult to detect and monitor with the kinds of imaging used to detect prostate adenocarcinoma (mpMRI, bone scans, PSMA PET scans), but may show up with FDG PET (see this link). They do not put out PSA, PAP or bone alkaline phosphatase. Special biochemical tests or biopsies for chromogranin A, neuron-specific enolase (NSE), synaptophysin,  DLL-3, CD56, and other biomarkers are required. It often appears at a "mixed type." 

Sub-types

Not all neuroendocrine prostate cancers carry the same prognosis. Aggarwal identified a sub-type that became prevalent in 17% of patients who were heavily pretreated with enzalutamide (Xtandi) and abiraterone (Zytiga). He calls this "treatment-emergent small cell neuroendocrine prostate cancer (t-SCNC). The pre-treatment probably selected for this subtype that may be partially responsive to familiar therapies. The "treatment-emergent" subtype and the small amounts sometimes detected initial biopsies do not appear to be as virulent (see this link). There are some studies that indicate that they may appear spontaneously in later stages of normal prostate cancer development. Aggarwal commented:
“Although long term androgen deprivation therapy may be associated with the development of treatment-emergent small cell neuroendocrine prostate cancer (t-SCNC) in a minority of patients, multiple studies have confirmed the long-term benefit of abiraterone and enzalutamide for prostate cancer patients in various disease settings. Use of these agents should not be limited by concern for the subsequent development of t-SCNC.”
Aggarwal has announced a clinical trial where he will be testing a combination of Xtandi, Keytruda, and ZEN-3694 in (among others) a group of men identified with the t-SCNC subtype. ZEN-3694 is an experimental medicine that inhibits a gene called MYC, which is often over-expressed in advanced prostate cancer. 

Aggarwal is also testing FOR-46 targeting the CD-46 protein that often is expressed in neuroendocrine tumors.

Chemotherapy

Because of the "mixed type," chemo often includes a taxane. More often, a platin is mixed in a cocktail with another chemo agent, like etoposide. A couple of case reports from Japan (see this link and this one) reported some success with a platin combined with irinotecan.

This clinical trial at Duke has two chemotherapies (cabazitaxel and carboplatin), as well as two checkpoint blockade-type immunotherapies (nivolumab and ipilimumab):
CHAMP

Nuclear Medicine/ Somatostatin

The Urology Cancer Center in Omaha, Nebraska has announced a clinical trial of 225Ac-FPI-2059 for neuroendocrine cancers. FPI-2059 is a small molecule that attaches to the neurotensin receptor 1 peptide that is expressed by neuroendocrine cancer cells.

Another radiopharmaceutical has been tried by the nuclear medicine department at the University of Heidelberg. I suggest that anyone who is interested email or call (they all speak English) Uwe_Haberkorn@med.uni-heidelberg.de Phone: 06221/56 7731. With the euro now at close to parity with the dollar, this medical tourism is an especially attractive option:

213Bi-DOTATOC shows efficacy in targeting neuroendocrine tumors

A similar radiopharmaceutical using Lu-177-DOTATATE (called Lutathera) has been FDA-approved for small cell cancer affecting the digestive tract. DOTATOC (and also DOTATEC and DOTATATE) binds to somatostatin receptors on the small cell digestive tract cancer surface, where it is highly expressed. It is rarely expressed in small-cell prostate cancer, but there have been some isolated case reports like this one or small trials like this one. This means that treatment with a somatostatin analog (octreotide, lanreotide, or pasireotide) may be somewhat effective even without the radioactive emitter attached to it. These drugs are available now in the US, are not toxic, and your doctor can prescribe them without a clinical trial. there is a clinical trial of it in London for any solid tumor:

https://clinicaltrials.gov/ct2/show/NCT02236910

These clinical trials include somatostatins:

https://clinicaltrials.gov/ct2/show/NCT01794793
https://clinicaltrials.gov/ct2/show/NCT02754297

This clinical trial at Johns Hopkins uses Lutathera to treat neuroendocrine prostate cancer, specifically:


While the presence of somatostatin receptors in the tumor can be determined by pathological analysis (immunohistochemical (IHC) staining for SSTR2), there is an FDA-approved PET scan that uses Ga-68-DOTATATE that can detect it without a biopsy. It is used to detect neuroendocrine tumors that are often non-prostatic. Researchers at Emory found that Ga-68-DOTATATE uptake is higher even in neuroendocrine tumors of prostatic origin, which suggests that somatostatin-based therapy may be beneficial. (One patient who was positive for a BRCA2 mutation but negative for NEPC had high uptake as well.)

DLL3

DLL3 is a protein that is expressed on the surface of neuroendocrine cells regardless of the cancer of origin, and has been identified in two-thirds of neuroendocrine prostate cancer (NEPC) cells. An antibody linked to a chemotherapy, called Rova-T, against DLL3 has been developed and has shown some promise against NEPC in a preclinical study. Unfortunately, AbbVie discontinued R&D after it failed to meet goals for small cell lung cancer (SCLC). A Phase 2 trial that included NEPC was discontinued. Misha Beltran at Dana Farber has tried an antibody-drug conjugate (rovalpituzumab teserine) targeted to DLL3 on a single patient. After two treatments, his metastases shrank and stabilized.

Harpoon has announced a clinical trial of HPN328  for people with advanced cancers that express DLL3. HPN328 is a bispecific T-cell engager (BiTE) that targets DLL3 and also promotes T cells to attack those cells exhibiting it. AMG757 is also a BiTE. Amgen has announced a clinical trial of AMG 757 for advanced prostate cancer. Phanes Therapeutics has a BiTE clinical trial targeting DLL3.

AMG119 is a CAR-T therapy that targets DLL-3. CAR-T involves treating one's own T-cells by sensitizing them to DLL3. Both of these create a T-cell and a cytokine response in environments that otherwise have low immune cell activity. That response may kill bystander cells, and through a phenomenon called "antigen spreading," may be able to kill other cancer cells that do not exhibit DLL3. (BiTE and CAR-T therapies that target PSMA are  in clinical trials noted at end of this article)

The Wang Lab at Duke has specific expertise in morphological analysis of NEPC and IHC staining for DLL3. It may be a good idea to get a second opinion from them.

Checkpoint blockade

Another recent discovery is that PD-L1 is highly expressed in SCPC. This opens the door to immunotherapies that target the PD-1/PD-L1 pathway, like Keytruda.

PD-L1 expression in small cell neuroendocrine carcinomas

Small clinical trials have so far shown little benefit:



Sunday, December 11, 2016

PET scans for prostate cancer

In the last few years there has been an explosion in the number of new PET scan indicators. I thought it a good idea to provide some background and an update.

Bone scans

PET scans may be understood as an improvement over bone scans. The traditional way of finding distant metastases is to use a technetium bone scan and CT. There are several problems with bone scans:
  • they show bone overgrowth, which may be bone metastases, but may just be arthritis or old injuries
  • only a bone biopsy can tell for sure, and it's not often feasible when the suspected mets are small or inaccessible
  • they reveal few mets when PSA is below 10-20 ng/ml or when PSA is stable
  • they only show bone mets, not soft tissue
The main advantage is that they are relatively inexpensive.

The principal uses are: 
  • to rule out bone mets in high risk patients prior to curative treatment
  • to diagnose metastases that may respond to chemo, Xofigo, or spot radiation
  • to track response to treatment among metastatic patients.

PET SCAN USES

Inherent limitations

The new PET scans are better than previous ones in terms of the size of the metastases they can detect, but they do not detect all metastases.
  • A cancer cell is many times smaller than the resolution of the CT or MRI. 
  • The activity of the cancer cell seems to influence whether it is detectable on any of the scans. 
  • There is "noise" in even the most specific tracer, with no sharp delineation between signal and background.
Salvage Radiation

The most important use of these new PET scans is to rule out salvage treatment when it would be futile. For men who have persistently elevated PSA after prostatectomy, or who have had a recurrence (nadir+2) after primary radiation treatment, a PET scan showing distant metastases can spare the man the ordeal and side effects of salvage treatment.

The FDA has approved Ga-68-PSMA-11 PET/CT for detection of recurrences after prostatectomy or radiation. They have also approved Axumin PET scans and C-11 Choline PET scans (at Mayo) for this purpose.

For salvage after primary radiation failure, it is necessary to locate areas within the prostate where the cancer may still be localized.  Memorial Sloan Kettering and the Mayo Clinic have effectively used PET scans to target areas within the prostate for salvage focal ablation or brachytherapy.

For salvage radiation after prostatectomy, it may be possible to identify areas of the prostate bed where spread is evident. While the entire prostate bed must be treated (most of the prostate cancer is below the limit of detection of even the most accurate PET/MRI scan), some radiation oncologists like to provide an extra boost of radiation to the detected cancer foci.

For salvage radiation after primary radiation therapy, whether focal or whole gland (see this link), a PSMA PET scan combined with an mpMRI may be able to detect areas within the prostate that still have cancer. PSMA PET scans may cause false positives if used alone to detect cancer in and around the prostate, because they are excreted in the urine. Some of the newer PSMA PET scans (e.g., F18-PSMA-1007 and F18-rh-PSMA-7) have less renal clearance.

There has been accumulating evidence in the last few years (see this link) that very early salvage radiation treatment may improve salvage radiation outcomes over waiting until the PSA has risen above 0.2 ng/ml. Unfortunately, none of our PET indicators are any good at detecting metastases when PSA is below 0.2 ng/ml. It is unlikely that there are any distant metastases when PSA is that low, but there are some relatively rare forms of prostate cancer that metastasize without putting out much PSA. This leaves the patient without any assurance that salvage radiation will be successful. Perhaps the new PORTOS genetic test will be able to detect distant metastases biochemically, but this remains to be proven.

Pelvic Lymph Node (LN) Treatment

For men diagnosed with high risk prostate cancer, a difficult question is whether the pelvic lymph nodes ought to be treated, either with radiation or with pelvic lymph node dissection. Nomograms based on disease characteristics are used to determine whether the pelvic LNs merit treatment, but such nomograms are often inaccurate. A CT scan can sometimes identify lymph nodes enlarged (>1.2 cm) due to cancer. However, some LNs are only slightly enlarged (0.8-1.2 cm), and some cancerous LNs are not enlarged at all (<0.8 cm). LNs are usually enlarged by infection, so size alone is not a good indicator of cancer. An advanced PET scan can sometimes detect cancerous LNs. This may aid the decision on whether to have whole pelvic treatment for men with high risk cancer. Men who have already had radical prostate therapy that may have included radiation (primary or salvage) to other areas (i.e., the prostate or prostate bed) may face a similar decision as to whether to treat the pelvic LNs with radiation.

Just as it is necessary to irradiate the entire prostate bed and not just the detected foci when giving salvage radiation after prostatectomy, it is probably necessary to treat the entire pelvic LN area, and not just individual LNs, when cancer is detected anywhere in the pelvic LN area. Of course, such a decision must be balanced against the risk of side effects. There are ongoing clinical trials (RTOG 0534 for salvage therapy and RTOG 0924 for primary therapy) to determine whether such treatment provides any survival advantage when LN involvement is suspected. The STAMPEDE trial included an arm where patients were node positive (but negative for distant metastases) and were treated with radiation. Short term follow-up demonstrated an improvement in failure-free survival of 52% among those who had treatment.

Ruling out distant spread where it seems to be localized

PSMA PET scans have been approved to detect prostate cancer in high-risk patients. PSMA PET scans provide a critical decision-making tool because it may be able to answer the following questions for the first time:
  1. Is the cancer still confined to the prostate capsule?
  2. Has the cancer spread to the prostate bed or to surrounding organs?
  3. Has the cancer spread to pelvic lymph nodes?
  4. Has the cancer spread to non-local lymph nodes, bone, or visceral organs?
Giving extra radiation to known tumors

While modern dose-escalated doses of radiation of very good at eradicating tumors, results can be improved even further if focused boost doses are given to areas in the prostate, the prostate bed, and pelvic lymph nodes that are proven to be cancerous with a PET scan. The excellent results are described here.

Oligometastatic radiation of distant metastases

Although some have theorized that there is a stage in prostate cancer metastatic progression where the cancer is still curable, or where it can be delayed by removal of 1-3 detectable metastases, this theory has never been proven. In fact, a meta-analysis this year (see this link) showed that metastatic progression continues in almost all men despite such treatment. The possibility remains that progression may be slowed by spot treatment, although this remains uncertain as well. The natural history of metastatic progression is often very slow in early stages, with years between the first few metastases. The reason for this may be because the tissue in metastatic sites must first be biochemically transformed by signals from micrometastases in order to accommodate the growth of larger metastases. This preparation of fertile "soil" in which metastatic "seeds" can grow may take some time. PET scans for detection undoubtedly introduce lead-time bias into the calculation; i.e., the time between the first and second detected metastasis is certainly longer because a more sensitive PET scan was used, and not necessarily because the first detected metastasis was spot-treated.

In spite of the uncertainty concerning efficacy of spot treatment, patients often want to treat whatever can be detected. When such metastases are detected with sensitive PET scans and are in locations amenable to spot treatment with SBRT, and there is minimal risk of radiation damage to nearby organs, it is hard to argue against such use. However, the patient should understand that there is so far no evidence that such treatment will provide any benefit. He should also understand that detectable metastases in distant sites means that his cancer is systemic. There are thousands of circulating cancer cells and undetectable cancer cells already lodged in tissues. For this reason, it is never a good idea to delay systemic therapy (e.g., hormone therapy) in order to wait for PSA to increase to a point where metastases become detectable on a PET scan. 

Palliative treatment of metastases

Metastases can cause pain and interference with organ function. Bone scans can find larger bone metastases, and they are the ones most apt to cause pain, fracture, or spinal compression. Metastases in weight-bearing bones may be spot-radiated with SBRT to prevent such problems and to relieve pain. In the unusual event that a bone scan can't locate them accurately enough for SBRT treatment, a PET scan may be used.

Bone scans do not detect metastases in soft tissue, while most PET scans (other than the NAF18 PET) can. A PET scan may locate metastases in organs that may be biopsied or treated with radiation or other therapies, like embolization or ablation.

Multiple metastases

The CHAARTED study has taught us that prostate cancer with multiple distant metastases behaves in a different way and reacts to different therapies compared to prostate cancer with a low metastatic burden. Although the metastatic burden in the CHAARTED study was based on bone scan and CT, there may be a potential to identify patients who may respond to earlier systemic therapy if a PET scan were to be used. This use has yet to be explored.

Tracking success of treatments (radiographic progression)

PSA is not always the best measure of whether a treatment is successful and ought to be continued. Because they destroy cancer cells, some therapies may actually raise the PSA level for some time immediately following treatment. Chemotherapy does not always immediately reduce PSA, but the patient wants to know whether the potentially toxic treatment should be continued. Most of the time, serial bone scans can provide an adequate radiographic assessment. However, in patients with low PSA or low metastatic burden, serial PET scans may sometimes provide a more accurate assessment.

Initial detection, active surveillance, focal therapy, dose painting

Just as multiparametric MRIs can be used to detect significant prostate cancer when suspicion remains after a first negative biopsy, a PET scan can conceivably be used for such a purpose (as in this clinical trial). PET scans can also be used to track progression of prostatic foci in patients on active surveillance. It is hard to justify the cost for such purposes, and there is as yet no evidence that it is any better than a multiparametric MRI. In light of the recent evidence that multiparametric MRI may fail to delineate up to 80% of detected prostatic index tumors, they may find future use of PET/MRI in contouring treatment areas for focal ablation and for dose painting (see this link).

The FDA has approved Ga-68-PSMA-11 PET/CT at UCLA and UCSF for unfavorable risk prostate cancer.


How PET scans work

Positron Emission Tomography (PET) is a way of creating a 3D anatomical image. Instead of using X-rays, as a Computerized Tomography (CT) scan does, it detects positrons, which are positively charged electrons (which do not exist in nature). When a positron encounters a normal negatively-charged electron, they annihilate each other and release 2 gamma rays in opposite directions. When the machine detects such a pair of gamma rays, it extrapolates their source position, putting an image together. The PET scanner is combined with a CT scanner in the same device in order to provide anatomic detail.

As a cautionary note, PET scans do expose the patient to significant amounts of ionizing radiation from both the PET indicators and the simultaneous CT scan. It is not something one wants to do frequently.

PET emitters are short-lived radioisotopes that are created in a nearby cyclotron. Commonly used ones include carbon 11 (C11), fluorine 18 (F18), gallium 68 (Ga68), copper 64 (Cu64), zirconium 89 (Zr 89), and iodine 124 (I124). The choice of which one to use is based on cost, access, half-life, strength of signal, and ease of integration with the ligand. C11, for example, has an extremely short half life of only 21 minutes. This means it has to be manufactured very nearby where it will be incorporated into a ligand (like acetate or choline), and must be used immediately. F18 has a longer half-life (118 minutes) and has excellent detectability, but interferes somewhat with metabolism of acetate or choline. I124 has a long half-life (4.2 days) which may be too long for a patient who may have to remain isolated for the duration.

PET emitters are often chemically attached (chelated) to molecules, called ligands, that have particular affinity for prostate cancer cells. Some ligands are metabolically active, meaning they are food for the cancer cell, but not as much for healthy cells. Other ligands are created to attach to specific binding sites on the surface or inside prostate cancer cells. 

NaF(18) PET for bone metastases

Sodium fluoride (NaF18) replaces hydroxide with positronic fluoride when hydroxyapatite, the mineral that constitutes our bones, is actively accumulating in bone metastases. It is our most sensitive tool for detecting bone metastases. Fourquet et al. found that in the same patients, NaF18 detected 91% of bone metastases while DCFPyL detected only 46%.

Metabolic ligands

Because rapidly growing cancer cells metabolize a lot of glucose, fluoro-deoxy-glucose (FDG) has long been used in PET scans for cancer. Prostate cancer in its early stages does not metabolize glucose readily, so FDG can't be used until later stages.

Prostate cancer cells do metabolize fats, consuming choline and acetate. C-11 choline and acetate overcomes the interference problem of F-18 choline and acetate, but is very difficult to work with. Although the FDA has approved the C-11 Choline PET, only the Mayo Clinic offers it in the US. A few sites offer the C-11 Acetate PET, but it is expensive. It also requires a fairly high PSA, ideally ≥ 2.0 ng/ml, or fairly large metastases, to detect anything.

Fluciclovine has recently been FDA approved. It is incorporated into prostate cancer cells as part of amino acid metabolism. It can detect somewhat smaller metastases at lower PSAs.

PSMA ligands

95% of prostate cancers express a protein called Prostate-Specific Membrane Antigen (PSMA) on the surface of cells. There are a variety of ligands that are attracted to it. Some of the ligands are antibodies (like J591), some are shortened antibodies (called minibodies, like Df-IAb2M), and some are small molecules (peptides, like PSMA-HBED-CC or DCFPyL). PSMA-targeted ligands may accumulate in salivary glands, tear glands and kidneys, and urinary excretion may interfere with readings in the prostate area. PSMA has also been found on the cell surface of some other kinds of cancer. New PSMA ligands are still being developed and tried. So far, the one that seems to have the highest specific affinity for PSMA are the F18-based ligands (F18-DCFPyL, F18-PSMA-1007, and F18-rh-PSMA-7). They detect more metastases at lower PSA than the others. 

As prostate cancer progresses, PSMA expression reduces and the cancer metabolizes glucose to a greater extent. Then, it will be detected by FDG PET scans.


Other ligands

There are other prostate cancer-specific molecules for which ligands have been developed and to which positron emitters have been attached.  One of the most promising is the bombesin or RM2 ligand that attaches to the gastrin-releasing peptide receptor (GRPR) on the prostate cancer cell. In pre-clinical studies, it outperformed C-11 Choline. Clinical trials have started. Clinical trials have begun on several PET ligands that are designed for other receptor sites: human kallikrein-related peptidase 2 (hK2), FMAU, Ga-68-Citrate, I-124-Prostate-Stem-Cell-Antigen, Ga-68-DOTATATE (Somatostatin receptor), F18-DHT (androgen receptor), Cu-64-DOTA-AE105 (uPAR receptor), Cu-64-TP3805 (VPAC receptor). or multiple radiotracers.

The winner (so far) is...

Based on clinical trials, below are various PET indicators in approximate rank order of their sensitivity to detect recurrent prostate cancer, and their specificity for detecting it exclusively:
  1. F18-PSMA-1007
  2. F18-rhPSMA-7
  3. F18-DCFPyL
  4. F18-DCFBC
  5. Ga68-PSMA-HBED-CC (Ga68-PSMA-11)
  6. Fluciclovine (F18 - FACBC)/ Axumin
  7. C11-Choline/ C-11-Acetate
  8. F18-Choline
  • NaF18 (note: best for detecting bone metastases)
  • F18-FDG (note: better in late-stage PCa)
The following table shows the percent of patients who had metastases detected at various PSAs. F18-PSMA-1007 and F18-rhPSMA-7, are experimental PET indicators that are cleared quickly from the bladder, and are the best so far. F18-DCFPyL is much better than Ga68-PSMA at low PSA.  At PSAs between 0.5-3.5 ng/ml. it detected prostate cancer in 88% of recurrent patients, while Ga68-PSMA-11 only detected prostate cancer in 66% of the same patients - an improvement in sensitivity by a third. Next in line is fluciclovine, which was recently FDA approved. In 10 patients screened for recurrence at a median PSA of 1.0 with both Ga68-PSMA-11 and fluciclovine, the PSMA scan detected cancer in 5 of the 10 men that were negative on fluciclovine. In addition, positive lymph nodes were detected in 3 of the men using the PSMA scan that were undetected with fluciclovine (see this link). Most other PET indicators, like C-11 Choline or Acetate, or NaF18 are not at all reliable when PSA is less than 2.0.


Percent of patients in whom prostate cancer was detected by the PET indicator, broken down by the PSA of the patients


PSA range

Source

PET Indicator

<0.2 ng/ml

0.2- 0.5 ng/ml

0.5 -2.0 ng/ml

> 2.0 ng/ml


F18-DCFPyL



88% (0.5-3.5)



(1)

Ga68-PSMA-HBED-CC



66%  (0.5-3.5)


F18-rh-PSMA-7 (experimental)


71%

86% (0.5-1.0)

86% (1.0-2.0)

95%

(11)

F18-PSMA-1007 (experimental)


86%

89% (0.5-1.0)

100% (1.0-2.0)

100%

(12) (13)

F18-DCFPyL


48%

50% (0.5-1.0)

89% (1.0-2.0)

94%

(9)

F18-DCFPyL


38%

63% (0.5-1.0)

83% (≥ 1.0)


(14)

Ga68-PSMA-HBED-CC

31%

54%

88%

(2)

Ga68-PSMA-HBED-CC


58%

73% (0.5-1.0)

93% (1.0-2.0)

97%

(3)

Ga68-PSMA-HBED-CC


50%

69%

86%

(4)

F18-FluoromethylCholine


12.5%

31%

57%

Ga68-PSMA-HBED-CC



36% (PSA<1, PSADT>6 months)

95% 

(PSADT<6 months)

(5)

Ga68-PSMA-HBED-CC

11.3%

26.6%

53.3% (0.5-1.0)

71.4% (1.0-2.0)

95.5%

(6)

Ga68-PSMA-HBED-CC

33.3%

41.2%

69.2% (0.5-1.0)

86.7% (1.0-2.0)

94.4%(2.0-5.0)

100% (>5.0)

(7)

Ga68-PSMA-HBED-CC

43%

58%

72% (0.5-1.0)

84% (1.0-2.0)

90% (2.0-5.0)

(13)

Fluciclovine


37.5% (0.2-1.0)    77.8% (1.0-2.0)

88.6%

(8)

C-11 Choline


28%

46% (0.5-1.0)

62% (1.0-2.0)

81%

(10)


PET/MRI

PET scans are usually combined with simultaneous CT scans for image resolution. Siemens has a device that simultaneously provides a PET scan and an MRI. This enables  greater image resolution and the detection of smaller metastases than is possible with a PET/CT. (GE and Philips manufacture dual scanners rather than an integrated single scanner). The PET/MRI exposes the patient to a much lower dose of ionizing radiation than the PET/CT. These devices are expensive, and are only available at a few large tertiary care facilities. In one PET/CT vs. PET/MRI comparison using Ga-68-PSMA, the PET/MRI was able to detect 42% more metastases in recurrent patients, 10% more lymph node metastases, and 21% more bone metastases. In the US, PET/MRIs are in use at Mass General, Johns Hopkins, Stanford, UCSF, Washington University, Cleveland Clinic, and Memorial Sloan Kettering and several others.

Cost/Availability

So far, only Ga-68-PSMA-11, FDG, C11-Choline, and Fluciclovine are FDA approved for prostate cancer detection. NaF is approved for clinical trials and registries only. FDA approval opens the way for Medicare and private insurance to approve and pay for them. Sometimes, insurance plans will agree to pick up the cost. Otherwise, patients who want them must pay out of pocket, if they are available. Ga68-PSMA-11, while FDA-approved at UCLA and UCSF so far, costs $3,000  out of pocket. Hopefully, Medicare/insurance will reimburse soon.

Clinical trials

All of the newer PET tracers require validation with larger sample sizes. While there are some diagnostic tests that have a "gold standard" against which performance can be evaluated, this is problematic for detecting metastases. A positive finding can often be confirmed with a biopsy, so a PET scan's positive predictive value (true positives and false positives) can be ascertained. But there is no easy way to determine whether negatives were true or false in live patients.

F18-DCFPyL is available for free in a trial at NIH for free among any men who are (1) high risk or (2) recurrent (see this link). It is available as a PET/MRI for specific purposes at the  Northwestern University.

It is also available at Johns Hopkins, where it was first developed, for a wide range of indications if ordered by any of their physicians Contact details are available here, There are several studies in Canada: in BC.

Ga68-PSMA-11 is approved at UCLA and UCSF and is available in a clinical trial in the US, including one with a PET/MRI, at  Cleveland Clinic

Fluciclovine is available almost everywhere in the US, and is covered by Medicare for recurrent patients.

If you are interested in one of those PET scans for an indication outside of the clinical trial, call the contact anyway. Some are planning clinical trials for expanded indications shortly, and some may make the PET scan available for purchase outside of the clinical trial. Inquire about cost and get pre-authorization from your insurance company if you can. These can be very expensive.